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Abstract 

Background Current guidelines recommend a uniform mean arterial pressure (MAP) target for resuscitating critically 
ill patients; for example, 65 mmHg for patients with sepsis and post-cardiac arrest. However, since cerebral autoregu-
lation capacity likely varies widely in patients, uniform target may be insufficient in maintaining cerebral perfusion. 
Personalized MAP targets, based on a non-invasive determination of cerebral autoregulation, may optimize perfusion 
and reduce complications.

Objectives This scoping review summarizes the numerical values, feasibility, and clinical data on personalized MAP 
targets in critically ill patients. The focus is on non-invasive monitoring, such as near-infrared spectroscopy and tran-
scranial doppler ultrasound, due to their safety, practicality and applicability to patients with- and without brain injury. 

Methods Following PRISMA-ScR guidelines, a systematic search of Ovid MedLine, Embase (Ovid), and the Cochrane 
Library (Wiley) was conducted on September 28, 2023. Two independent reviewers screened titles, abstracts, and full 
texts for eligibility and manually reviewed references.

Results Of 7,738 studies were identified, 49 met the inclusion criteria. Of these, 45 (92%) were observational and 4 
(8%) were interventional. Patient populations included cardiac surgery (26, 53%), non-cardiac major surgery (4, 8%), 
cardiac arrest (8, 16%), brain injury (7, 14%), respiratory failure and shock (3, 6%), and sepsis (3, 6%). Optimal MAP 
was reported in 24 (49%), lower limit of autoregulation in 23 (47%), and upper limit of autoregulation in 10 studies 
(20%). Thirty-four studies reported partial data loss due to software failures, anomalous data, insufficient natural MAP 
fluctuation, and workflow barriers. Available randomized controlled trials (RCT) identified challenges with maintaining 
patients within their target range. Studies explored the associations between personalized MAP targets and a wide 
range of neurological and non-neurological outcomes, with the most significant and consistent associations identi-
fied for acute kidney injury and major morbidity and mortality. Ten studies investigated demographic predictors 
identifying only few predictors of personalized targets. 

Conclusion Preliminary investigations suggest considerable variability in personalized MAP targets, which may 
explain differences in clinical outcomes among critically ill populations. Key gaps remain, including a lack of observa-
tional studies in critically ill subpopulations other than cardiac surgery and well-designed RCTs. Resolving identified 
feasibility barriers might be crucial to successfully carrying out future studies.
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Background
Cerebral autoregulation refers to the brain’s intrinsic abil-
ity to maintain stable cerebral blood flow despite fluc-
tuations in systemic blood pressure [1]. This is a vital 
homeostatic mechanism that protects the brain from 
ischemia at low pressures and hyperemia at high pres-
sures [1]. However, autoregulation may be impaired in 
critically ill adults, particularly those with traumatic 
brain injury (TBI), stroke, subarachnoid hemorrhage 
(SAH), or sepsis [2–4]. This dysfunction renders cerebral 
perfusion pressure-passive, meaning fluctuations in MAP 
can directly compromise cerebral blood flow and oxygen 
delivery, exacerbating neurologic injury and increasing 
mortality risk [5–7].

Current clinical guidelines have relied on fixed MAP or 
cerebral perfusion pressure (CPP = MAP—ICP [intracra-
nial pressure]) thresholds to prevent hypoperfusion. For 
example, a MAP greater than 65 mmHg is suggested for 
patients with sepsis [8], post-cardiac arrest [9], and in the 
perioperative period [10, 11]. However, these thresholds 
were determined predominantly using population-based 
studies and might not account for the increasingly recog-
nised, considerable inter-individual variability in cerebral 
autoregulation capacity in critically ill populations [12, 
13].

Cerebral autoregulation can be conceptualized as com-
prising static and dynamic components, existing in a con-
tinuum of the pace of cerebrovascular change to systemic 
blood pressure fluctuations [14–18]. Static autoregula-
tion reflects the brain’s ability to maintain cerebral blood 
flow across steady-state changes in MAP over minutes 
to hours. In contrast, dynamic autoregulation refers 
to the brain’s rapid vascular responses to transient or 

spontaneous changes in MAP occurring within seconds. 
Dynamic autoregulation is especially relevant in critical 
care, where patients are hemodynamically unstable (have 
large and rapid changes in cardiovascular status) and 
are closely monitored. Both static and dynamic assess-
ments could inform actionable MAP or CPP targets in 
the clinical setting. To assess dynamic autoregulation, a 
variety of analytical methods can be employed, including 
frequency-domain spectral analyses (e.g., transfer-func-
tion analysis applied to both induced and spontaneous 
BP oscillations), time-domain techniques (e.g., correla-
tion-based methods and the autoregulation index), and 
non-linear approaches [17, 19–21]. Correlation-based 
methods are among the least computationally intensive 
and thus most readily translatable to real-time bedside 
monitoring. When implemented at the bedside, autoreg-
ulation-guided perfusion monitoring offers a physi-
ologically grounded strategy to tailor blood-pressure 
management to each patient’s needs.

Invasive multimodal neuromonitoring, particularly the 
use of ICP monitoring to calculate the slow-wave corre-
lations that result in pressure reactivity index (PRx), has 
allowed clinicians to estimate a patient-specific “optimal 
CPP” or “optimal MAP” (CPPopt or MAPopt), defined as 
the pressure at which autoregulatory capacity is maximal. 
In addition, the upper and lower limits of autoregulation 
(ULA and LLA) can be derived, representing the bounda-
ries beyond which autoregulation becomes impaired. 
Observational studies have suggested that maintaining 
perfusion near these individualized targets is associated 
with improved neurologic outcomes, particularly in TBI 
[22]. However, the risks and expertise required for ICP 
monitoring limits its utility to select populations, leaving 
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a gap in individualized perfusion strategies for broader 
critically ill cohorts [23].

To address this, non-invasive techniques, such as near-
infrared spectroscopy (NIRS) and transcranial doppler 
ultrasound (TCD), have been explored as alternatives 
to assess cerebral autoregulation and guide personal-
ized MAP titration [24]. NIRS monitoring uses forehead 
sensors that emits and detects light absorption at a par-
ticular depth to measure regional cerebral oxygen satu-
ration (rSO₂) in the cortex. NIRS provides a continuous 
estimate of cerebral oxygen balance (delivery vs. utiliza-
tion) in the sampled region, which is influenced by cer-
ebral blood flow. TCD provides a non-invasive window 
into cerebral blood flow by measuring blood velocity in 
the cerebral arteries (usually the middle cerebral artery). 
These methods, when correlated with MAP generate sur-
rogate indices of dynamic autoregulation (e.g., cerebral 
oximetry index [COx], mean blood velocity index [Mx]) 
that can enable the estimation of individualized blood 
pressure targets without the risks of invasive monitoring. 
Early studies suggest these modalities may be feasible and 
clinically informative across a range of intensive care unit 
(ICU) populations, including cardiac surgery, cardiac 
arrest and sepsis [24].

While there is growing interest in using non-invasive 
autoregulation monitoring to personalize blood pressure 
targets in critical care, no comprehensive synthesis cur-
rently exists to examine what methods have been applied, 
what MAPopt values they yield, how feasible they are to 
use in practice, and what clinical outcomes or predictors 
have been associated with their use. Understanding these 
dimensions is essential to bridge the gap between emerg-
ing research and clinical translation and to guide future 
studies on precision hemodynamic management.

Methods
This review was reported in accordance with Preferred 
Reporting Items for Systematic reviews and Meta-Anal-
yses extension for Scoping Reviews (PRISMA-ScR) [25] 
and preregistered January 2nd 2024 on PROSPERO 
(ID:CRD42024500484).

Literature search
The literature search strategy was designed in collabora-
tion with a clinical research librarian who has expertise 
in literature review. On September 28, 2023, a compre-
hensive journal/white-paper literature search was con-
ducted across Ovid MedLine, Embase (Ovid platform), 
Cochrane Library CENTRAL (Wiley platform) using 
a combination of subject headings and key words (see 
Additional file  1). Relevant articles from the search and 
those discovered throughout the review process (e.g., 

by exploring bibliographies from selected articles) were 
reviewed.

Eligibility
We included studies that (1) are interventional or obser-
vational design, or case series, (2) written in English, (3) 
include adult patients with surgical or medical diagnoses 
that warrant ICU admissions (4) indicate that they have 
calculated MAPopt or ABPopt (optimal arterial blood 
pressure) or limits/thresholds of autoregulation based on 
non-invasive neuromonitoring. Studies were excluded if 
(1) they were conference abstracts, case reports, reviews, 
or editorial/commentaries, (2) animal or paediatric stud-
ies, (3) studies in healthy volunteers. Reviews were tagged 
at the screening stage and read to search for additional 
references.

Selection of sources of interest
Abstract and full-text screening were carried out in pairs 
among all authors (JX, AC, AA, and JGB). Disagreements 
were solved by consensus or by involving a third reviewer. 
Covidence was used to manage references and facilitate 
the screening. For missing or incomplete information, we 
contacted the corresponding authors by email.

Data abstraction and synthesis
Data charting was done using a pre-formatted excel tem-
plate and modified iteratively throughout the review 
process. JX and AC independently completed critical 
appraisal using the Newcastle–Ottawa Scale for observa-
tional studies, JBI checklist for case series for case series 
studies, and Cochrane RoB2 for interventional studies. 
Disagreements were solved by consensus  or by involv-
ing a third reviewer. Due to the heterogeneity in study 
designs and the scoping intention of our review, the anal-
ysis is descriptive. ChatGPT was used to improve writing 
clarity and grammar.

Results
Study characteristics
Our search resulted in 7,738 studies with 49 remaining 
after the independent screening process (Fig. 1 PRISMA 
diagram). Table  1 reports the distribution of included 
studies by study design, publication year, setting, popu-
lation, objectives, and quality. In total, 45 observational 
studies, 2 interventional physiology studies, 2 rand-
omized controlled studies were included. There is a 
growing number of studies on this subject while over half 
of the included studies are in patients receiving cardiac 
surgery. Most studies have a low to moderate risk of bias 
(Additional file 2).
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Absolute personalized target values
MAPopt, LLA, and ULA were reported in 24, 23, 10 
studies respectively. These are summarized in Fig.  2 
(MAPopt), Additional file 3 (LLA), and Additional file 4 
(ULA). Notably, as shown in Fig.  2, values of MAPopt 
vary within and across studies and all studies reported a 
mean/median MAPopt over 65 mmHg.

We also summarized the width of the MAP range 
(ULA-LLA) in available studies. As shown in Fig.  3, 
widths vary within and across studies.

The magnitude of deviation and/or the duration of time 
patients spent outside of their personalized MAP range 
was reported in 23 studies (Additional file  5). Within 
these studies, 11 studies reported time or deviation alone. 
Others reported the product of both time and deviation 
(ie. area outside personalized MAP range), some further 
standardized this metric by adjusting for the differences 
in monitoring duration across patients.

Methods of target determination
Autoregulation assessment
In most studies, monitoring occurred throughout the 
surgery or early upon ICU admissions. The duration of 
autoregulation monitoring is mostly consistent in cardiac 
surgery studies, typically spanning the full surgery or the 
cardiopulmonary bypass (CPB) period only. However, it 
varies in post-operative and ICU studies, ranging from 
the first few hours after surgery [27–29], to a single meas-
urement within 24 h after resuscitation [30], to consecu-
tive daily measurements lasting over one hour [31–33], to 
discountinous recordings over several timepoints or days 
[34–36], continuous monitoring from 8  h up to 1  week 
[37–49]. Importantly, while most often MAPopt is cal-
culated with the unit of patients, in some studies MAP-
opt is calculated per recordings, when there are several 
recordings per patient [32–34, 36], or every pre-deter-
mined partial recording duration (every hour [39], every 
4 h [48], or every 12 h [42]) within continous recordings. 
Most studies used a correlation-based approach to assess 
autoregulation (45/49), though also with variations. For 
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example, the majority uses Pearson correlation (42/45), 
while three studies applied Spearman correlation [40, 
41, 43]. Autoregulation indices are calculated every few 
minutes within the recordings. If the duration used for 
calculation is too short (e.g., < 1 min), the algorithm gen-
erates a noisy autoregulation signal that is indistinguish-
able across patients. Conversely, if the duration used is 
too long, the algorithm smoothens the autoregulation 

signal and diminishes the detection of dynamic changes. 
Although most studies calculate autoregulation indices 
every 5-min, others opted for alternative lengths, such as 
30secs [50] or 30 min [43], to better distinguish the sig-
nals across their select populations. Three studies incor-
porated multi-window weighting algorithms to improve 
MAPopt yield [32, 37, 38]. Before the calculation of these 
correlation indices, signals sampled are usually averaged 

Table 1 Included studies’ characteristics

*This refers to the setting where monitoring necessary for personalized target identification was performed. In some studies, multiple settings were possible (e.g., 
patient was monitored both in the OR and ICU and one target were calculated for each setting)

**These may not be the primary objectives of the studies, and some studies have multiple objectives

***For Newcastle–Ottawa Scale, scores ≥ 7–9, 4–6, < 4 are considered low, intermediate, and high risk, respectively [26]. For JBI checklist, "Yes" answers for ≥ 8, 5–8, < 5 
items are considered low, intermediate, and high risk, respectively

Study characteristics No. of 
studies, n (%)

Total number of included studies 49 (100)

Study design

Observational 45 (92)

Interventional physiology 2 (4)

Randomized controlled trial 2 (4)

Publication year

2000–2009 3 (6)

2010–2014 10 (20)

2015–2019 20 (41)

2020–2023 16 (32)

Setting*

Operating room (OR) 29 (59)

Intensive Care Unit (ICU) 17 (35)

Neurocritical Care Unit (NCCU) 5 (10)

Unknown/Department of Infectious Disease 1 (2)

Patients Characteristics

Cardiac Surgery 26 (53)

Non-Cardiac Major Surgery 4 (8)

Cardiac Arrest 7 (14)

Brain Injury 5 (10)

Respiratory Failure & Shock 3 (6)

Sepsis 2 (4)

Acute Bacterial Meningitis 1 (2)

Mixed 1 (2)

Study Objectives as Relates to Personalized MAP targets**

 Characterize personalized targets or the feasibility of identifying personalized targets 12 (24)

 Test and compare methods to improve personalized targets parameters calculations 15 (31)

 Compare personalized targets parameters by setting or intervention (ICU vs operative room, HCA, sevoflurane anesthesia, temporal-
ity of surgery/disease stage)

8 (16)

 Test the association between personalized targets parameters and clinical characteristics or outcomes 24 (49)

 Test the underlying physiology of personalized target parameters (e.g., vascular biomarkers, left–right lobe differences) 3 (6)

Newcastle–Ottawa Scale/JBI/Cochrane Risk of bias Score***

 Low 22

 Mid 25

 High 2
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over 10 s to filter out high-frequency components caused 
by respiration and pulse waveforms but two studies also 
studied the reliability of a short averaging duration (Mx2s 
vs. Mx10s) to improve the speed of identifying the LLA 
[51, 52].

Within the correlation-based group, MAPopt was most 
commonly defined as the MAP associated with the low-
est autoregulation index (nadir) or the vertex of a sec-
ond-order polynomial curve fit, after averaging COx by 
5  mmHg length MAP bins. However, three studies [40, 
41, 43] averaged MAP values by COx bins to improve 
MAPopt identification rate in their ICU respiratory 

failure/shock population. This approach reduces the 
impact of uneven MAP sampling and may be more 
robust to noise and variability in COx signals. It does 
not require the identification of a single nadir of the COx 
curve, which is not identifiable in a significant proportion 
of patients [37].

Among the four studies that did not use a correlation-
based method, three employed regression-based tech-
niques [35, 49, 53]. In these studies, cerebral signals were 
plotted against MAP. Two models were fitted to the data: 
a linear and a horizontal model for MAP values below 
and above the LLA respectively. The point where these 

Fig. 2 MAPopt values reported across studies. Note that some studies reported multiple values corresponding to different participant sub-groups/
MAPopt calculation methods used. Secondary aggregation of these datapoints to one single value are oftentimes not possible or appropriate, 
hence they are listed as reported in the study. D = Day, Cox = Cerebral Oximetry Index, Mx = Mean Blood Velocity Index, HVx = Haemoglobin Volume 
Reactivity Index, CFVx = Cerebral Flow Velocity Index, CPC = Cerebral Performance Category, TBI = Traumatic Brain Injury, AIS = Acute Ischemic 
Stroke, ICH = Intracranial Hemorrage, aSAH = Aneurysmal Subarachnoid Hemorrhage, TCD = Transcranial Doppler Ultrasound, NIRS = Near Infared 
Spectroscopy, UT-NIRS = Ultra-sound tagged Near Infared Spectoscopy
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two models intersect or transition marks the LLA. One 
study [39] uses a wavelet-based method, which is a newer 
approach that considers correlations between signals in 
both the time and frequency domains simultaneously.

For studies determining the limits of autoregulation, 
the most frequently used method was to apply a thresh-
old to the correlation index (e.g., COx > 0.3), with the 
corresponding MAP at threshold crossing defined as 
the LLA or ULA. Threshold values ranged from 0.3 to 
0.45, with 0.3 being the most common. A few studies 
employed alternative approaches, including threshold 
adjusted for End Tidal  CO2 [54], visual identification [44, 
55, 56], regression-analysis [35, 49, 53], and MAP range 
where COx is ± 1 SD of the lowest [40, 41, 43]. Methods 
and autoregulation limits of each studies are detailed in 
Additional file 3 and 4.

Correlation‑index value/monitoring technology
As outlined in Fig. 2 and Additional file 3 and 4, NIRS 
is the most commonly used technology to approximate 
cerebral perfusion in non-surgical populations (16/19). 
When studying surgical populations, TCD is more 
commonly used (17/30). Seven studies have compared 
the consistency in personalized targets determined by 
different non-invasive monitoring technologies and 
thereby correlation index. This includes Mx (TCD) vs 
COx (NIRS – regional cerebral oxygen saturation) [33, 
57–59], Mx vs HVx (NIRS – relative tissue hemoglobin 

density) [60], and Mx vs CFVx (Ultrasound-tagged 
NIRS) [61, 62]. These studies found that population-
level agreement is generally high. However, limits of 
agreement are broad, suggesting that there is a high 
degree of inter-individual variability. Most of these 
studies were conducted in cardiac surgery populations, 
with only one notable exception in patients with brain 
injury [33].

Consistency between MAPopt and autoregulatory 
limits derived from non-invasive versus invasive met-
rics was evaluated in three studies: Silverman et  al.
[48] (COx vs PRx [ICP] in aneurysmal SAH [aSAH]), 
Zweifel et al.[36] (THx [NIRS—total hemoglobin index] 
vs PRx in TBI), and Hoiland et  al.[39] (COx vs PRx, 
PRx vs JvPRx [Jugular Venous Oxygen Saturation], 
PRx vs  JvsaO2Rx [Jugular Venous Blood Pressure] in 
Hypoxic-Ischemic Brain Injury [HIBI]). Silverman et al.
[48] and Zweifel et al.[36] found strong agreement, with 
75% MAPopt, LLA, and ULA values within ± 7  mmHg 
of PRx-derived targets. In contrast, Hoiland et  al.
[39] observed wide limits of agreement (± 25  mmHg) 
despite a low mean bias and a poor AUC for MAPopt, 
LLA, and ULA detection in PRx by other metrics, rais-
ing concerns about COx and other non-invasive met-
rics’ accuracy in HIBI. This variability was attributed 
by Hoiland et al. [39] to NIRS-specific technical limita-
tions, physiological assumptions, and diffusion-limited 
oxygen transport in HIBI.

Fig. 3 The magnitude of target MAP range reported across studies. POD = post-operative day. For which day 1 is the day patients complete their 
surgery
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Common barriers to target identification
Thirty-four studies described participants/data lost due 
to feasibility barriers. Feasibility barriers were catego-
rized as barriers to data acquisition and target calcula-
tion when data is sufficient. Specific challenges cited in 
each category and the number of studies cited are listed 
in Table 2. 

Personalized targets and clinical outcomes
Twenty-one studies examined the association between 
personalized MAP targets and clinical outcomes. Find-
ings vary by patient population and outcome measure. In 
cardiac surgery patients, particularly those undergoing 
CPB, MAP values below the LLA have been consistently 
linked to adverse outcomes such as acute kidney injury 
(AKI) and major morbidity and mortality (MMOM) in 
observational studies [27, 55, 58, 65, 68, 69]. Associations 
with stroke [58, 60, 63, 65, 67] and delirium have also 
been reported [28, 29, 32, 70], though findings are less 
consistent. Available randomized controlled trials (RCT) 
have largely failed to confirm the associations [71, 72]. A 
large RCT designed to determine the effects of maintain-
ing the MAP above LLA on neurological outcomes as 
well as AKI and MMOM did not find a significant effect, 
although the intervention did not consistently keep the 
target MAP above LLA [71]. However, a nested cohort 
within the same study did demonstrate an effect on 
reducing the incidence and odds of delirium after effec-
tively decreasing time and magnitude below LLA [72].

In patients with acute brain injury (e.g., aSAH, TBI, 
intracerebral hemorrhage), personalized MAP targets 
may have prognostic value. Duration spent and/or devia-
tion outside the autoregulatory range have been asso-
ciated with worse neurological outcomes [45, 48] and 
increased mortality [45] even when the absolute val-
ues of ULA, LLA, and MAPopt do not significantly dif-
fer between patients with favorable and unfavorable 
outcomes.

By contrast, in patients recovering from cardiac arrest, 
studies have not demonstrated a strong relationship 
between personalized MAP targets and long-term cog-
nitive recovery [37, 42]. Similarly, in patients with sep-
sis [31] or respiratory failure-related shock [41], neither 
absolute MAPopt values nor deviations from autoregu-
lation limits have shown associations with mortality or 
delirium. However, these findings should be interpreted 
cautiously, as significantly fewer studies have been con-
ducted in these populations. Additionally, there is vari-
ability in how personalized MAP targets are calculated 
and measured across studies, whether as discrete MAP-
opt, LLA, or ULA values, or as cumulative measures such 
as time, deviation of an absolute magnitude, or the prod-
uct of both outside autoregulatory limits (see Additional 

File 5 for different metrics of exposure to MAP targets 
studied). This variability limits the ability to directly com-
pare the studies.

Overall, while observational data suggest that varia-
tions from personalized MAP targets may have an associ-
ation with clinical outcomes, particularly in surgical and 
neurocritical care populations, interventional trials have 
yet to demonstrate consistent benefits [71, 73]. Addition-
ally, research in other critically ill populations is in its 
early stages and requires further replication, testing, and 
refinement.

Demographic predictors of personalized targets
Ten studies examined demographic and clinical predic-
tors of personalized MAP targets to answer the ques-
tion whether targets could be approximated using other 
parameters and further contextualize the underpinning 
biology of these targets [29, 41, 42, 45, 54, 63, 67, 68, 74, 
75]. They found that most common demographic, life-
style, and clinical factors do not significantly predict indi-
vidualized cerebral autoregulatory targets like MAPopt, 
LLA, or ULA (Fig. 4). Only a few associations were sta-
tistically significant, and even these demonstrated small 
effect sizes or marginal clinical relevance. Moreover, sur-
gical and intraoperative variables had only minor predic-
tive value in isolated models that explained little variance.

Discussion
This scoping review summarizes the absolute values, 
methods, feasibility, and clinical data on cerebral autoreg-
ulation-based personalized MAP targets in critically ill 
patients using non-invasive neuromonitoring techniques. 
We identified 49 studies that calculated personalized 
MAP targets, most of which were observational. Across 
these studies, the average MAPopt consistently exceeded 
65 mmHg. The confidence intervals within study and var-
iability across studies were high. Most personalized MAP 
targets are determined via correlation-based methods, 
although there are some variabilities in its application. 
Several feasibility challenges with current methods are 
reported, from issues with data acquisition, target calcu-
lation, to target maintenance. The association between 
personalized MAP targets and outcomes was assessed 
primarily in observational studies. There is strongest evi-
dence supporting potential benefits in AKI prevention 
and reducing MMOM in cardiac surgery patients and 
emerging evidence improving neurological outcomes and 
mortality in patients with acute brain injury , asides from 
HIBI. Evidence in other outcomes or patient populations 
remains preliminary or inconsistent. Despite the diverse 
factors investigated, few predictors of MAPopt have been 
identified and have not yet been externally validated.
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Several trials investigated the impact of higher versus 
lower blood pressure targets on mortality and morbidity 
but found no significant effects [76–78]. Recent meta-
analyses [79, 80] suggested potential benefits of lower 
MAP targets. However, confidence intervals were wide, 
and conclusions were described as imprecise and incon-
sistent with prior recommendations. This may stem from 
a lack of individualized approaches to blood pressure 
management. In our review, we observed within- and 
between-study variability in MAPopt, LLA, ULA. Blaine-
Easley et  al. [60] reported a deviation of median MAP-
opt as large as -20 mmHg/ + 15 mmHg (range), while 
River-Lara et  al. [45] documented an median MAPopt 
of 100 mmHg in 89 patients comatose from brain injury. 
MAP associated with intact autoregulation may also dif-
fer by sub-populations (e.g., higher in patients with brain 
injury) as shown by the unweighted mean plots in our 
results and supplement. Diagnosis-specific changes in 
MAPopt is an interesting hypothesis that warrants fur-
ther assessment.

Individualized resuscitation using NIRS and TCD has 
demonstrated feasibility in the ICU and OR despite the 
complexity of these settings. However, several challenges 
remain. Fluctuating or unidentifiable autoregulatory 
curves due to poor signal quality and natural biological 
variations (or lack thereof ) are commonly cited as chal-
lenges. These challenges, as described in our summary 

of the feasibility of these techniques, can prevent the 
identification of personalized targets in over half of the 
study population. New methods or approaches, such as a 
multi-window weighted calculations [81], inverted COx-
MAP binning [43], automated MAP signal cleaning [64], 
and increasing the MAP within 1h from 65 to 95 mmHg 
using norepinephrine to quickly detect MAPopt [82] is 
increasingly studied and could be considered in future 
trials to improve target identification rates. Research-
ers might also anticipate challenges with maintaining 
patients in their target range. In our scoping review, 
only two RCTs were identified [71, 73]. The larger of the 
two examined multiple outcomes (selected on the basis 
of prior observational data). However, the intervention 
to keep patients at or near MAPopt did not reduce the 
area under the LLA. As a result, no definitive conclusions 
could be drawn about whether targeting individualized 
MAPopt improves clinical outcomes. Studies examin-
ing higher vs lower blood pressure targets in the ICU 
reported clinicians’ reluctance to decrease vasopressor 
infusion rates at a lower MAP [76] due to concern for 
patient’s clinical condition, following other targets or 
clinical priorities, and inadequate trial awareness [77]. 
There is a dearth of RCTs designed to test the effective-
ness of personalized targets, but the feasibility issues out-
lined above will need to be addressed before initiating 
large-scale interventional trials.

Fig. 4 Diagram overview of factors associated with autoregulation-guided MAP targets. *MAC positively correlates with ULA but not LLA. Low 
PaCo2 and high MAP treatment associates with a larger MAP area below LLA
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Currently, autoregulation-based MAP targets are stud-
ied using a variety of calculation methods and experi-
mental paradigm. These include different MAPopt, LLA, 
ULA calculation approaches, neuromonitoring technol-
ogy used, and different duration and onset of autoregu-
lation monitoring. It is unknown what methods best 
balance the clinical feasibility and the benefits of such 
targets. The most suitable methods might differ by criti-
cally ill sub-population due to differences in practice 
setting and pathophysiology. Patterns of blood pressure 
fluctuations may differ between the ICU and OR, affect-
ing the yield and prognostic abilities of different target 
identification approaches. Some studies challenge the 
accuracy of existing algorithm and NIRS in measuring 
autoregulation in patients who experienced cardiac arrest 
due to potential impairments in oxygen diffusion and 
metabolism in this population [83]. Future studies might 
take inspiration from studies in critically ill populations 
broadly, considering the large quantity of research con-
ducted in cardiac surgery and patients with brain injury, 
however, researchers should be sensitive to the differ-
ences in setting and pathophysiology and a likely need to 
adapt approaches to their critical ill sub-populations.

Our assessment of demographic predictors highlighted 
that were few consistent predictors of autoregulation-
guided MAP targets, despite the wide range of factors 
studied in relation to cerebral autoregulation. This may 
reflect the fact that different autoregulation monitor-
ing methods are not fully interchangeable, or that MAP 
targets are highly individualized and dynamic. It also 
highlights the complexity of cerebrovascular control, 
which is influenced by multiple interacting physiologi-
cal processes, such as autoregulatory function, cerebral 
metabolism, and systemic variables, that may not fol-
low linear or easily modeled relationships. For exam-
ple, recent research shows that cerebral autoregulation 
is more effective during rising MAP than falling MAP 
over short timescales (10–60 s), possibly due to differ-
ing myogenic and sympathetic activity [84]. This sug-
gests a potential limitation of correlation-based methods, 
though it’s unclear if directional sensitivity persists at the 
slower timescales used to calculate correlation-based 
indices (e.g., 5 min). Future work should aim to better 
understand the biological basis of autoregulation esti-
mates and how they relate to other physiological markers, 
to guide the development of more reliable and personal-
ized clinical applications.

One of the strengths of this review is its broad scope. 
We included diverse patient populations across varying 
clinical settings. We have also captured multiple metrics 
of individualized blood pressure targets (i.e. MAPopt, 
LLA, ULA). Furthermore, we have performed a risk of 

bias assessment for included studies, which improves the 
ability to interpret the captured data.

Our review also has several limitations. First, scoping 
review methodology precluded the ability to perform 
meta-analyses that could further allow the comparison 
of findings and address specific questions of interest 
(e.g., the frequency of hypo- vs hypertension or varia-
tions in MAPopt across populations). Second, our search 
was limited to English-language publications, potentially 
excluding relevant studies in other languages.

Conclusion
Technological advancements have made it feasible to 
determine personalized MAP targets in critically ill 
patients. Most evidence in this emerging field is obser-
vational and shows high variability in MAP values asso-
ciated with intact autoregulation. While some studies 
suggest associations with clinical outcomes, methodo-
logical inconsistencies and feasibility challenges, such 
as signal loss, variable calculation methods, and inabil-
ity to keep MAP above LLA, limit interpretability and 
generalizability. To move the field forward, future stud-
ies should prioritize validating algorithms across diverse 
patient populations, standardizing within critically ill 
sub-populations, and identifying strategies to overcome 
practical barriers to implementation. Efforts should be 
tailored to the unique physiological profiles of critically 
ill sub-groups and will likely lead to a better understand-
ing of the complex, multifactorial nature of cerebrovas-
cular regulation.
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