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Abstract

Background Current guidelines recommend a uniform mean arterial pressure (MAP) target for resuscitating critically
ill patients; for example, 65 mmHg for patients with sepsis and post-cardiac arrest. However, since cerebral autoregu-
lation capacity likely varies widely in patients, uniform target may be insufficient in maintaining cerebral perfusion.
Personalized MAP targets, based on a non-invasive determination of cerebral autoregulation, may optimize perfusion
and reduce complications.

Objectives This scoping review summarizes the numerical values, feasibility, and clinical data on personalized MAP
targets in critically ill patients. The focus is on non-invasive monitoring, such as near-infrared spectroscopy and tran-
scranial doppler ultrasound, due to their safety, practicality and applicability to patients with- and without brain injury.

Methods Following PRISMA-ScR guidelines, a systematic search of Ovid MedLine, Embase (Ovid), and the Cochrane
Library (Wiley) was conducted on September 28, 2023. Two independent reviewers screened titles, abstracts, and full
texts for eligibility and manually reviewed references.

Results Of 7,738 studies were identified, 49 met the inclusion criteria. Of these, 45 (92%) were observational and 4
(8%) were interventional. Patient populations included cardiac surgery (26, 53%), non-cardiac major surgery (4, 8%),
cardiac arrest (8, 16%), brain injury (7, 14%), respiratory failure and shock (3, 6%), and sepsis (3, 6%). Optimal MAP

was reported in 24 (49%), lower limit of autoregulation in 23 (47%), and upper limit of autoregulation in 10 studies
(20%). Thirty-four studies reported partial data loss due to software failures, anomalous data, insufficient natural MAP
fluctuation, and workflow barriers. Available randomized controlled trials (RCT) identified challenges with maintaining
patients within their target range. Studies explored the associations between personalized MAP targets and a wide
range of neurological and non-neurological outcomes, with the most significant and consistent associations identi-
fied for acute kidney injury and major morbidity and mortality. Ten studies investigated demographic predictors
identifying only few predictors of personalized targets.

Conclusion Preliminary investigations suggest considerable variability in personalized MAP targets, which may
explain differences in clinical outcomes among critically ill populations. Key gaps remain, including a lack of observa-
tional studies in critically ill subpopulations other than cardiac surgery and well-designed RCTs. Resolving identified
feasibility barriers might be crucial to successfully carrying out future studies.
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Background

Cerebral autoregulation refers to the brain’s intrinsic abil-
ity to maintain stable cerebral blood flow despite fluc-
tuations in systemic blood pressure [1]. This is a vital
homeostatic mechanism that protects the brain from
ischemia at low pressures and hyperemia at high pres-
sures [1]. However, autoregulation may be impaired in
critically ill adults, particularly those with traumatic
brain injury (TBI), stroke, subarachnoid hemorrhage
(SAH), or sepsis [2—4]. This dysfunction renders cerebral
perfusion pressure-passive, meaning fluctuations in MAP
can directly compromise cerebral blood flow and oxygen
delivery, exacerbating neurologic injury and increasing
mortality risk [5-7].

Current clinical guidelines have relied on fixed MAP or
cerebral perfusion pressure (CPP=MAP—ICP [intracra-
nial pressure]) thresholds to prevent hypoperfusion. For
example, a MAP greater than 65 mmHg is suggested for
patients with sepsis [8], post-cardiac arrest [9], and in the
perioperative period [10, 11]. However, these thresholds
were determined predominantly using population-based
studies and might not account for the increasingly recog-
nised, considerable inter-individual variability in cerebral
autoregulation capacity in critically ill populations [12,
13].

Cerebral autoregulation can be conceptualized as com-
prising static and dynamic components, existing in a con-
tinuum of the pace of cerebrovascular change to systemic
blood pressure fluctuations [14—18]. Static autoregula-
tion reflects the brain’s ability to maintain cerebral blood
flow across steady-state changes in MAP over minutes
to hours. In contrast, dynamic autoregulation refers
to the brain’s rapid vascular responses to transient or

Page 2 of 15

Clinical outcomes studied

6P |emm

Acute KidneyInjury Major Mortality and
Morbidity

Reported precision blood
pressure targets vary
widely both within and
across studies

o0 Long-term
‘cognitive re Delirum
ecees
Fewdemographic

factors can
patientsin target

predict MAP
targets | ﬂ
range

Need to be considered

Feasibilities challenges such as

o000 00 0 +  Poor data quality

+ Insufficient data
+  Trouble keeping

spontaneous changes in MAP occurring within seconds.
Dynamic autoregulation is especially relevant in critical
care, where patients are hemodynamically unstable (have
large and rapid changes in cardiovascular status) and
are closely monitored. Both static and dynamic assess-
ments could inform actionable MAP or CPP targets in
the clinical setting. To assess dynamic autoregulation, a
variety of analytical methods can be employed, including
frequency-domain spectral analyses (e.g., transfer-func-
tion analysis applied to both induced and spontaneous
BP oscillations), time-domain techniques (e.g., correla-
tion-based methods and the autoregulation index), and
non-linear approaches [17, 19-21]. Correlation-based
methods are among the least computationally intensive
and thus most readily translatable to real-time bedside
monitoring. When implemented at the bedside, autoreg-
ulation-guided perfusion monitoring offers a physi-
ologically grounded strategy to tailor blood-pressure
management to each patient’s needs.

Invasive multimodal neuromonitoring, particularly the
use of ICP monitoring to calculate the slow-wave corre-
lations that result in pressure reactivity index (PRx), has
allowed clinicians to estimate a patient-specific “optimal
CPP” or “optimal MAP” (CPPopt or MAPopt), defined as
the pressure at which autoregulatory capacity is maximal.
In addition, the upper and lower limits of autoregulation
(ULA and LLA) can be derived, representing the bounda-
ries beyond which autoregulation becomes impaired.
Observational studies have suggested that maintaining
perfusion near these individualized targets is associated
with improved neurologic outcomes, particularly in TBI
[22]. However, the risks and expertise required for ICP
monitoring limits its utility to select populations, leaving
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a gap in individualized perfusion strategies for broader
critically ill cohorts [23].

To address this, non-invasive techniques, such as near-
infrared spectroscopy (NIRS) and transcranial doppler
ultrasound (TCD), have been explored as alternatives
to assess cerebral autoregulation and guide personal-
ized MAP titration [24]. NIRS monitoring uses forehead
sensors that emits and detects light absorption at a par-
ticular depth to measure regional cerebral oxygen satu-
ration (rSO,) in the cortex. NIRS provides a continuous
estimate of cerebral oxygen balance (delivery vs. utiliza-
tion) in the sampled region, which is influenced by cer-
ebral blood flow. TCD provides a non-invasive window
into cerebral blood flow by measuring blood velocity in
the cerebral arteries (usually the middle cerebral artery).
These methods, when correlated with MAP generate sur-
rogate indices of dynamic autoregulation (e.g., cerebral
oximetry index [COx], mean blood velocity index [Mx])
that can enable the estimation of individualized blood
pressure targets without the risks of invasive monitoring.
Early studies suggest these modalities may be feasible and
clinically informative across a range of intensive care unit
(ICU) populations, including cardiac surgery, cardiac
arrest and sepsis [24].

While there is growing interest in using non-invasive
autoregulation monitoring to personalize blood pressure
targets in critical care, no comprehensive synthesis cur-
rently exists to examine what methods have been applied,
what MAPopt values they yield, how feasible they are to
use in practice, and what clinical outcomes or predictors
have been associated with their use. Understanding these
dimensions is essential to bridge the gap between emerg-
ing research and clinical translation and to guide future
studies on precision hemodynamic management.

Methods

This review was reported in accordance with Preferred
Reporting Items for Systematic reviews and Meta-Anal-
yses extension for Scoping Reviews (PRISMA-ScR) [25]
and preregistered January 2nd 2024 on PROSPERO
(ID:CRD42024500484).

Literature search

The literature search strategy was designed in collabora-
tion with a clinical research librarian who has expertise
in literature review. On September 28, 2023, a compre-
hensive journal/white-paper literature search was con-
ducted across Ovid MedLine, Embase (Ovid platform),
Cochrane Library CENTRAL (Wiley platform) using
a combination of subject headings and key words (see
Additional file 1). Relevant articles from the search and
those discovered throughout the review process (e.g.,
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by exploring bibliographies from selected articles) were
reviewed.

Eligibility

We included studies that (1) are interventional or obser-
vational design, or case series, (2) written in English, (3)
include adult patients with surgical or medical diagnoses
that warrant ICU admissions (4) indicate that they have
calculated MAPopt or ABPopt (optimal arterial blood
pressure) or limits/thresholds of autoregulation based on
non-invasive neuromonitoring. Studies were excluded if
(1) they were conference abstracts, case reports, reviews,
or editorial/commentaries, (2) animal or paediatric stud-
ies, (3) studies in healthy volunteers. Reviews were tagged
at the screening stage and read to search for additional
references.

Selection of sources of interest

Abstract and full-text screening were carried out in pairs
among all authors (JX, AC, AA, and JGB). Disagreements
were solved by consensus or by involving a third reviewer.
Covidence was used to manage references and facilitate
the screening. For missing or incomplete information, we
contacted the corresponding authors by email.

Data abstraction and synthesis

Data charting was done using a pre-formatted excel tem-
plate and modified iteratively throughout the review
process. JX and AC independently completed critical
appraisal using the Newcastle-Ottawa Scale for observa-
tional studies, JBI checklist for case series for case series
studies, and Cochrane RoB2 for interventional studies.
Disagreements were solved by consensus or by involv-
ing a third reviewer. Due to the heterogeneity in study
designs and the scoping intention of our review, the anal-
ysis is descriptive. ChatGPT was used to improve writing
clarity and grammar.

Results

Study characteristics

Our search resulted in 7,738 studies with 49 remaining
after the independent screening process (Fig. 1 PRISMA
diagram). Table 1 reports the distribution of included
studies by study design, publication year, setting, popu-
lation, objectives, and quality. In total, 45 observational
studies, 2 interventional physiology studies, 2 rand-
omized controlled studies were included. There is a
growing number of studies on this subject while over half
of the included studies are in patients receiving cardiac
surgery. Most studies have a low to moderate risk of bias
(Additional file 2).
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49 studies included

Fig. 1 PRISMA Flow chart

Absolute personalized target values

MAPopt, LLA, and ULA were reported in 24, 23, 10
studies respectively. These are summarized in Fig. 2
(MAPopt), Additional file 3 (LLA), and Additional file 4
(ULA). Notably, as shown in Fig. 2, values of MAPopt
vary within and across studies and all studies reported a
mean/median MAPopt over 65 mmHg.

We also summarized the width of the MAP range
(ULA-LLA) in available studies. As shown in Fig. 3,
widths vary within and across studies.

The magnitude of deviation and/or the duration of time
patients spent outside of their personalized MAP range
was reported in 23 studies (Additional file 5). Within
these studies, 11 studies reported time or deviation alone.
Others reported the product of both time and deviation
(ie. area outside personalized MAP range), some further
standardized this metric by adjusting for the differences
in monitoring duration across patients.
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Methods of target determination

Autoregulation assessment

In most studies, monitoring occurred throughout the
surgery or early upon ICU admissions. The duration of
autoregulation monitoring is mostly consistent in cardiac
surgery studies, typically spanning the full surgery or the
cardiopulmonary bypass (CPB) period only. However, it
varies in post-operative and ICU studies, ranging from
the first few hours after surgery [27-29], to a single meas-
urement within 24 h after resuscitation [30], to consecu-
tive daily measurements lasting over one hour [31-33], to
discountinous recordings over several timepoints or days
[34-36], continuous monitoring from 8 h up to 1 week
[37-49]. Importantly, while most often MAPopt is cal-
culated with the unit of patients, in some studies MAP-
opt is calculated per recordings, when there are several
recordings per patient [32—34, 36], or every pre-deter-
mined partial recording duration (every hour [39], every
4 h [48], or every 12 h [42]) within continous recordings.
Most studies used a correlation-based approach to assess
autoregulation (45/49), though also with variations. For
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Table 1 Included studies’ characteristics
Study characteristics No. of
studies, n (%)
Total number of included studies 49 (100)
Study design
Observational 45 (92)
Interventional physiology 2(4)
Randomized controlled trial 24
Publication year
2000-2009 3(6)
2010-2014 10 (20)
2015-2019 20 (41)
2020-2023 16 (32)
Setting*®
Operating room (OR) 29 (59)
Intensive Care Unit (ICU) 17 (35)
Neurocritical Care Unit (NCCU) 5(10)

Unknown/Department of Infectious Disease
Patients Characteristics

Cardiac Surgery

Non-Cardiac Major Surgery

Cardiac Arrest

Brain Injury

Respiratory Failure & Shock

Sepsis

Acute Bacterial Meningitis

Mixed

Study Objectives as Relates to Personalized MAP targets**

Characterize personalized targets or the feasibility of identifying personalized targets 12 (24)

Test and compare methods to improve personalized targets parameters calculations 15(31)

Compare personalized targets parameters by setting or intervention (ICU vs operative room, HCA, sevoflurane anesthesia, temporal- 8 (16)

ity of surgery/disease stage)

Test the association between personalized targets parameters and clinical characteristics or outcomes 24 (49)

Test the underlying physiology of personalized target parameters (e.g., vascular biomarkers, left-right lobe differences) 3(6)
Newcastle-Ottawa Scale/JBI/Cochrane Risk of bias Score***

Low 22

Mid 25

High 2

*This refers to the setting where monitoring necessary for personalized target identification was performed. In some studies, multiple settings were possible (e.g.,
patient was monitored both in the OR and ICU and one target were calculated for each setting)

**These may not be the primary objectives of the studies, and some studies have multiple objectives

***For Newcastle-Ottawa Scale, scores >7-9, 4-6, <4 are considered low, intermediate, and high risk, respectively [26]. For JBI checklist, "Yes" answers for > 8, 5-8,<5

items are considered low, intermediate, and high risk, respectively

example, the majority uses Pearson correlation (42/45),
while three studies applied Spearman correlation [40,
41, 43]. Autoregulation indices are calculated every few
minutes within the recordings. If the duration used for
calculation is too short (e.g.,<1 min), the algorithm gen-
erates a noisy autoregulation signal that is indistinguish-
able across patients. Conversely, if the duration used is
too long, the algorithm smoothens the autoregulation

signal and diminishes the detection of dynamic changes.
Although most studies calculate autoregulation indices
every 5-min, others opted for alternative lengths, such as
30secs [50] or 30 min [43], to better distinguish the sig-
nals across their select populations. Three studies incor-
porated multi-window weighting algorithms to improve
MAPopt yield [32, 37, 38]. Before the calculation of these
correlation indices, signals sampled are usually averaged
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Fig. 2 MAPopt values reported across studies. Note that some studies reported multiple values corresponding to different participant sub-groups/
MAPopt calculation methods used. Secondary aggregation of these datapoints to one single value are oftentimes not possible or appropriate,
hence they are listed as reported in the study. D=Day, Cox =Cerebral Oximetry Index, Mx=Mean Blood Velocity Index, HVx=Haemoglobin Volume
Reactivity Index, CFVx = Cerebral Flow Velocity Index, CPC=Cerebral Performance Category, TBI=Traumatic Brain Injury, AlS=Acute Ischemic
Stroke, ICH=Intracranial Hemorrage, aSAH = Aneurysmal Subarachnoid Hemorrhage, TCD=Transcranial Doppler Ultrasound, NIRS=Near Infared

Spectroscopy, UT-NIRS = Ultra-sound tagged Near Infared Spectoscopy

over 10 s to filter out high-frequency components caused
by respiration and pulse waveforms but two studies also
studied the reliability of a short averaging duration (Mx2s
vs. Mx10s) to improve the speed of identifying the LLA
[51, 52].

Within the correlation-based group, MAPopt was most
commonly defined as the MAP associated with the low-
est autoregulation index (nadir) or the vertex of a sec-
ond-order polynomial curve fit, after averaging COx by
5 mmHg length MAP bins. However, three studies [40,
41, 43] averaged MAP values by COx bins to improve
MAPopt identification rate in their ICU respiratory

failure/shock population. This approach reduces the
impact of uneven MAP sampling and may be more
robust to noise and variability in COx signals. It does
not require the identification of a single nadir of the COx
curve, which is not identifiable in a significant proportion
of patients [37].

Among the four studies that did not use a correlation-
based method, three employed regression-based tech-
niques [35, 49, 53]. In these studies, cerebral signals were
plotted against MAP. Two models were fitted to the data:
a linear and a horizontal model for MAP values below
and above the LLA respectively. The point where these
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two models intersect or transition marks the LLA. One
study [39] uses a wavelet-based method, which is a newer
approach that considers correlations between signals in
both the time and frequency domains simultaneously.

For studies determining the limits of autoregulation,
the most frequently used method was to apply a thresh-
old to the correlation index (e.g., COx>0.3), with the
corresponding MAP at threshold crossing defined as
the LLA or ULA. Threshold values ranged from 0.3 to
0.45, with 0.3 being the most common. A few studies
employed alternative approaches, including threshold
adjusted for End Tidal CO, [54], visual identification [44,
55, 56], regression-analysis [35, 49, 53], and MAP range
where COx is+1 SD of the lowest [40, 41, 43]. Methods
and autoregulation limits of each studies are detailed in
Additional file 3 and 4.

Correlation-index value/monitoring technology

As outlined in Fig. 2 and Additional file 3 and 4, NIRS
is the most commonly used technology to approximate
cerebral perfusion in non-surgical populations (16/19).
When studying surgical populations, TCD is more
commonly used (17/30). Seven studies have compared
the consistency in personalized targets determined by
different non-invasive monitoring technologies and
thereby correlation index. This includes Mx (TCD) vs
COx (NIRS - regional cerebral oxygen saturation) [33,
57-59], Mx vs HVx (NIRS - relative tissue hemoglobin

density) [60], and Mx vs CFVx (Ultrasound-tagged
NIRS) [61, 62]. These studies found that population-
level agreement is generally high. However, limits of
agreement are broad, suggesting that there is a high
degree of inter-individual variability. Most of these
studies were conducted in cardiac surgery populations,
with only one notable exception in patients with brain
injury [33].

Consistency between MAPopt and autoregulatory
limits derived from non-invasive versus invasive met-
rics was evaluated in three studies: Silverman et al.
[48] (COx vs PRx [ICP] in aneurysmal SAH [aSAH]),
Zweifel et al.[36] (THx [NIRS—total hemoglobin index]
vs PRx in TBI), and Hoiland et al.[39] (COx vs PRx,
PRx vs JvPRx [Jugular Venous Oxygen Saturation],
PRx vs JvsaO,Rx [Jugular Venous Blood Pressure] in
Hypoxic-Ischemic Brain Injury [HIBI]). Silverman et al.
[48] and Zweifel et al.[36] found strong agreement, with
75% MAPopt, LLA, and ULA values within+7 mmHg
of PRx-derived targets. In contrast, Hoiland et al.
[39] observed wide limits of agreement (+25 mmHg)
despite a low mean bias and a poor AUC for MAPopt,
LLA, and ULA detection in PRx by other metrics, rais-
ing concerns about COx and other non-invasive met-
rics’ accuracy in HIBI. This variability was attributed
by Hoiland et al. [39] to NIRS-specific technical limita-
tions, physiological assumptions, and diffusion-limited
oxygen transport in HIBIL
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Common barriers to target identification

Thirty-four studies described participants/data lost due
to feasibility barriers. Feasibility barriers were catego-
rized as barriers to data acquisition and target calcula-
tion when data is sufficient. Specific challenges cited in
each category and the number of studies cited are listed
in Table 2.

Personalized targets and clinical outcomes

Twenty-one studies examined the association between
personalized MAP targets and clinical outcomes. Find-
ings vary by patient population and outcome measure. In
cardiac surgery patients, particularly those undergoing
CPB, MAP values below the LLA have been consistently
linked to adverse outcomes such as acute kidney injury
(AKI) and major morbidity and mortality (MMOM) in
observational studies [27, 55, 58, 65, 68, 69]. Associations
with stroke [58, 60, 63, 65, 67] and delirium have also
been reported [28, 29, 32, 70], though findings are less
consistent. Available randomized controlled trials (RCT)
have largely failed to confirm the associations [71, 72]. A
large RCT designed to determine the effects of maintain-
ing the MAP above LLA on neurological outcomes as
well as AKI and MMOM did not find a significant effect,
although the intervention did not consistently keep the
target MAP above LLA [71]. However, a nested cohort
within the same study did demonstrate an effect on
reducing the incidence and odds of delirium after effec-
tively decreasing time and magnitude below LLA [72].

In patients with acute brain injury (e.g., aSAH, TBI,
intracerebral hemorrhage), personalized MAP targets
may have prognostic value. Duration spent and/or devia-
tion outside the autoregulatory range have been asso-
ciated with worse neurological outcomes [45, 48] and
increased mortality [45] even when the absolute val-
ues of ULA, LLA, and MAPopt do not significantly dif-
fer between patients with favorable and unfavorable
outcomes.

By contrast, in patients recovering from cardiac arrest,
studies have not demonstrated a strong relationship
between personalized MAP targets and long-term cog-
nitive recovery [37, 42]. Similarly, in patients with sep-
sis [31] or respiratory failure-related shock [41], neither
absolute MAPopt values nor deviations from autoregu-
lation limits have shown associations with mortality or
delirium. However, these findings should be interpreted
cautiously, as significantly fewer studies have been con-
ducted in these populations. Additionally, there is vari-
ability in how personalized MAP targets are calculated
and measured across studies, whether as discrete MAP-
opt, LLA, or ULA values, or as cumulative measures such
as time, deviation of an absolute magnitude, or the prod-
uct of both outside autoregulatory limits (see Additional
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File 5 for different metrics of exposure to MAP targets
studied). This variability limits the ability to directly com-
pare the studies.

Overall, while observational data suggest that varia-
tions from personalized MAP targets may have an associ-
ation with clinical outcomes, particularly in surgical and
neurocritical care populations, interventional trials have
yet to demonstrate consistent benefits [71, 73]. Addition-
ally, research in other critically ill populations is in its
early stages and requires further replication, testing, and
refinement.

Demographic predictors of personalized targets

Ten studies examined demographic and clinical predic-
tors of personalized MAP targets to answer the ques-
tion whether targets could be approximated using other
parameters and further contextualize the underpinning
biology of these targets [29, 41, 42, 45, 54, 63, 67, 68, 74,
75]. They found that most common demographic, life-
style, and clinical factors do not significantly predict indi-
vidualized cerebral autoregulatory targets like MAPopt,
LLA, or ULA (Fig. 4). Only a few associations were sta-
tistically significant, and even these demonstrated small
effect sizes or marginal clinical relevance. Moreover, sur-
gical and intraoperative variables had only minor predic-
tive value in isolated models that explained little variance.

Discussion

This scoping review summarizes the absolute values,
methods, feasibility, and clinical data on cerebral autoreg-
ulation-based personalized MAP targets in critically ill
patients using non-invasive neuromonitoring techniques.
We identified 49 studies that calculated personalized
MAP targets, most of which were observational. Across
these studies, the average MAPopt consistently exceeded
65 mmHg. The confidence intervals within study and var-
iability across studies were high. Most personalized MAP
targets are determined via correlation-based methods,
although there are some variabilities in its application.
Several feasibility challenges with current methods are
reported, from issues with data acquisition, target calcu-
lation, to target maintenance. The association between
personalized MAP targets and outcomes was assessed
primarily in observational studies. There is strongest evi-
dence supporting potential benefits in AKI prevention
and reducing MMOM in cardiac surgery patients and
emerging evidence improving neurological outcomes and
mortality in patients with acute brain injury , asides from
HIBI. Evidence in other outcomes or patient populations
remains preliminary or inconsistent. Despite the diverse
factors investigated, few predictors of MAPopt have been
identified and have not yet been externally validated.



Page 9 of 15

(2025) 29:196

Xie et al. Critical Care

[81] pa1iodal 10U sem aouajeAald dyidads

[£€]

swuedidnted qibI3 |[e O % PUE [G1] %6 PIIIAYY
[85 'sS] syuedidnued jo

%9C—E€T PUB [£E] PIPIOI3I €1ED JO %7 | P13V

[8 ey 'OF

'/ €] PISIASI pUB PIMBIARI S| [020304d BY3 USYM UO DUl
-puadap syuedpinied 9|qiIbi9 JO %ES 01 %€ PAIDAYY

[29] sauedidnued 9z 01 dn pa1dapy

(e 'L ‘O] suedidnied Jo 9561 01 dn pa1dayy
[0%7] pa1odal 10U sem aduajerald dydads
[£€] pauodal 10U sem aduajerald dyidads

[8€] syusiied JO 951 P1DPYY
[6€] pariodas 10U sem adus|eA.d dyidadg

INd 00:61:£ 520C/9/S

[¥] PaYIUSpPI 9 PINOYS PUB PR1d3je 2I0W

90 1ybiw suonendod dyioads ‘paysew si 1oedwi
Agaiay1 Abojouyds) sy 01 JUaI3YUl 3G PN ‘[€6]
(959) M3} SeM 3SNED SY} O Pale|aJ UONLIIIe JUSlied

[e€] pauiodal 10U sem aduajeaald oyinads

[€9-19 ‘€€l

Y21eas534 3 Ul

A|1ea paynuspl ag pjnod pue (siuaned painidal jo
9%/—1) 1B JUSWUNID s1oedwl Ajlewiuly

(296 '95 ¢S] 's|eubis pajeurusel

-U0D 1IN0 3|NJ A|139449d 10U 1YBIW [eAOWSI [BNUBI
‘[€€] 9%/ Sem asned s|y1 01 pajeal el uonuile ‘Ainful
ureiq u| “[09] AjlpAndadsal 9%9¢ pue [16] 9%Eg 01 dn
2J9M 3SNED SIY] 0} PaIe|aI SSO| [eubls pue uonLne
1URI1ed "ALIANDE A191NeD0.129]9 Ybiy 01 anp ajow
spouad gdd-150d/21d s10aye siy1 ‘A1961ns deipied uj

Buiwi/ubisap Apnis AjIpoin

UOISN|2Xa U1l

uolsn|oxa Juaned Jo Buluesp eleq
uoneusWNOop aAoidwl pue [od030id

M3IADI ‘BUIPIOI3) J91Je A|91RIPSWILL| BIBP 1DRIIXD
‘so)s buiddinba pue bulureil-ai ‘uoIsn|oXe 1uailed

Bujues|d e1ep pue UOISN|IX3 JudNed
Bujuea|d 4y dIWyiioble/oine Jo [enuepy

sBuIpi0d3l [e131e|IUN AJUO 3SN JO UOISN|DXD 1Udlled
SBUIPIODaI SA0UISY

UOISN|IXa 1U3ey

SBUIpIODal [BIS1E|IUN AJUO 3SN 1O UOISN|IXS JUSlied

uolsn|oxe 1usiied

UoISN|IX3 Jualied Jo ‘sBuIpIod2i
[e421€[IUN AJUO SZ1|1IN ‘S1DBJILIE JO S|GRAOWSI [ENUBJ

— — on — <

uonadwod Apnis a10jaq abieydsip N

suon
-e2]|dwod Bulpiodal 12410 1o sbujpiodal pabeweq

elep poleulweiuod Jo snojewlouy

uolesiunw
-W0ds|w [020104d O ‘BuLLIBjSURIY S|IYM SSO| B1eP
‘Buipiodas Auj2py-ybiy ou ‘Ayjigejiereun Juawdinby

(P1EP dVY|N SNONUIIUOD JO SSO|) 3IN|IR) DIRMYOS
e1eP PI1BUIWIRIUOD IO SNOJRWOUY
Aujigejieaeun Juswdinb3

aIn|iey Buipioday

uondunyew apoxdQ

SINSS| UOISaYPE. J0SUIS

(wisiu
-eyoaw buipiodal Y3 yum a|greduwodul ssbueyd
|ea160jo1sAyd o1jogeisw) sjeubls paleulweluo))

(Awo1daiueniwsy
'BUISSaIP ‘SI0HUOW “H'3) UOIIDNIISCO Peayi04

MOPUIM |eluRIOSURIY JO XD

(Aupojan 3|qissodwl AjjedibojolsAyd ‘A191ned04103|9
“JusWwaAoW “63) BIRP PIIRUILIRIUOD/SNOJRUIOUY

uonenoed 1ahue|

paypadsun 1o JaY10O

dvYW

SYIN

asL
uonisinboe ereq

cuonedijdde jesjuipd 10 Apnis uo ypedwy

PapUSWILIOIAI 1O USY L) SNSRI S3IPNIS JO N

anss)

K106a3e)H

S9lPN1s SSOIDe PaduUalajal UoedyRuUapI 190181 01 Siolleg ¢ a|qel



Page 10 of 15

(2025) 29:196

Xie et al. Critical Care

sbuipuy ay3 394dJa3uisiw Jou 03 du|eAdd

pajebaiB66e sy 110da1 03 Jou PIPIDAP SM ‘SSED ISBY} U] *SISNED J3Y30 YHM parehaibbe si anssi 3y Jo 93ud(eAdld Sy} SSWIIDWOS *3|qe} SY3 Ul S9SN Pals]| YIM P)RIDOSSE Se payluap! A3da11p Ji paid A|UO 3dU3|eARId,

(1]

siuedpied JO (SO LXIA) %91 PUE (STXIN) %6 | PRI2agy

[¥S ‘i '8¢ "pe ‘c€] sauediinied Jo 90| p1dYY
[£9'€9 VS '€S '6F

‘et '6¢] ([Aluo yoeoidde UOIR|DII0D] 9/ 7—-97 SNSIDA
SS0| 98 1—) SIIPNIS ND| UBY3 S318J UOIIedYRUSp!
191190 pey Aj[esauab sa1pnis [eD16INS !Sa3el UOIDAIIP
pacuUaN|UI SaN|BA PJOYSDIYL :pa1D3YJe A|IABSY J0W
S3IPNIS uoIssaibal ‘syuedidied JO 0509—¢ PAIDAYY

[£9-59'€9 VS €S 1S '6F

‘Sh—¢t ‘e€1 (621 VT15A YN 404 Jamoj siesdde piaix
'9GE URYL ISMO| S 9SNeD SIY1 01 Paie|al SSO| 'salpnis
OM] 3533 W) SIPISY “AI9A0DRJ JI9Y) Ul J21€] [13un
|NJSS9IONSUN OS|e sem pue ain3ound Jequin| 213Sou
-Beip 1a1e Y ¢ 1514 9Y1 Ul SIIbUIUSW [BLIS1DBG YIIM
siuaned ul 1] Bunendjed paui [GeT e 19 Jo|Io N Ny
-$S92DNSUN SEM PUB BUIPI0I31 BUO| UIW-G | UM
V17 Bunienoled paui [z6]1e 19 919hIa9) ‘spoyiaw
Apnis uo buipuadap syuedidiied 9500 | -7 PR1OUY

V/N L

papnaxa 4 ||Im syuaned

[NJSS220NSUN J INQ S1L[Ndjed 03 apew sidwany S

paviodal Apualedsuel) aq pjnoys asuajeaald ‘Uol

-eljeA Ayijeay Jo 1ed pswinsse se papasu sdais oN /

sanjeA pjoysaiyl bupsnipe
PlOYsaIyl 9Yl SA0GER X0 1S9MO| 31 se 17 auyag Sl

'

spjoysaiyi bupenion|y

uolnelnp buipiodas Joys

Sp|oysa4y3 9|qeidadde uyum
/MO|3] sAeme dy/IN—S)UI| dVIA 9]qeAIasqo ON

spjoysalyi 2|qeidadde apisino
/oA0qER shemie gy N—SHWI| dVIA 9|qeAISSqO ON

cuonedijdde jesjuipd 10 Apnis uo 3oedwy

papuswiwiodal 10 uaje) sainsea|\ SaIpnis Jo N

anss| K106331e>

(Panunuod) z 9jqey



Xie et al. Critical Care (2025) 29:196

Page 11 of 15

Demographic & Medical History Medications Surgical, hemodynamic, and
Lifestyle molecular factors
~
. . Calcium channel ( Type of surgery, HCA, HR, PP, Setting
g Age, gender, Hypenensngn. dlabeltes, blocker, ACE rS02, highest body temperature,
8 we'ghi'B:A’ i i ':;'::;:r:[ inhibitor, All GFR, Hb, LVEF, s-AASl, MAC* | (_ORvsICU ]
S smoking, ; . o h 4
g hyperlipid vascular disease, chronic rer;e;p??r b::;l;er, > SOIHo crossscamp ting < Etiology
-emia heart failure, COPD, Afib B k"' o Lowest body temperature (-),
ocker, HMG-CoA MAP(+)%, MAC*, CPB duration (-),
( BMi()andwhite(-) |[ Carotid endarterectomy(-) | [ Diuretics (-) ) pre-operative systolic BP (+),
creatinine (+), AASI (+), PaCO2* )

&

e

Cerebral Autoregulation-Guided

Stroke

Personal MAP Targets

(Legend

association

// I
l AKI H Mortality [ Conflicting data %

[ Significant association

(3

o

=

8 Long-term

. s

3 GoEiD Delirium
recovery e

* Population elaye
dependent? cerebral
ischemia

Low cardiac
MMOM output
syndrome

+ Positive correlation
\ .~ Negative correlation .

Fig. 4 Diagram overview of factors associated with autoregulation-guided MAP targets. *MAC positively correlates with ULA but not LLA. Low
PaCo2 and high MAP treatment associates with a larger MAP area below LLA

Several trials investigated the impact of higher versus
lower blood pressure targets on mortality and morbidity
but found no significant effects [76—78]. Recent meta-
analyses [79, 80] suggested potential benefits of lower
MAP targets. However, confidence intervals were wide,
and conclusions were described as imprecise and incon-
sistent with prior recommendations. This may stem from
a lack of individualized approaches to blood pressure
management. In our review, we observed within- and
between-study variability in MAPopt, LLA, ULA. Blaine-
Easley et al. [60] reported a deviation of median MAP-
opt as large as -20 mmHg/+15 mmHg (range), while
River-Lara et al. [45] documented an median MAPopt
of 100 mmHg in 89 patients comatose from brain injury.
MAP associated with intact autoregulation may also dif-
fer by sub-populations (e.g., higher in patients with brain
injury) as shown by the unweighted mean plots in our
results and supplement. Diagnosis-specific changes in
MAPopt is an interesting hypothesis that warrants fur-
ther assessment.

Individualized resuscitation using NIRS and TCD has
demonstrated feasibility in the ICU and OR despite the
complexity of these settings. However, several challenges
remain. Fluctuating or unidentifiable autoregulatory
curves due to poor signal quality and natural biological
variations (or lack thereof) are commonly cited as chal-
lenges. These challenges, as described in our summary

of the feasibility of these techniques, can prevent the
identification of personalized targets in over half of the
study population. New methods or approaches, such as a
multi-window weighted calculations [81], inverted COx-
MAP binning [43], automated MAP signal cleaning [64],
and increasing the MAP within 1h from 65 to 95 mmHg
using norepinephrine to quickly detect MAPopt [82] is
increasingly studied and could be considered in future
trials to improve target identification rates. Research-
ers might also anticipate challenges with maintaining
patients in their target range. In our scoping review,
only two RCTs were identified [71, 73]. The larger of the
two examined multiple outcomes (selected on the basis
of prior observational data). However, the intervention
to keep patients at or near MAPopt did not reduce the
area under the LLA. As a result, no definitive conclusions
could be drawn about whether targeting individualized
MAPopt improves clinical outcomes. Studies examin-
ing higher vs lower blood pressure targets in the ICU
reported clinicians’ reluctance to decrease vasopressor
infusion rates at a lower MAP [76] due to concern for
patient’s clinical condition, following other targets or
clinical priorities, and inadequate trial awareness [77].
There is a dearth of RCTs designed to test the effective-
ness of personalized targets, but the feasibility issues out-
lined above will need to be addressed before initiating
large-scale interventional trials.
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Currently, autoregulation-based MAP targets are stud-
ied using a variety of calculation methods and experi-
mental paradigm. These include different MAPopt, LLA,
ULA calculation approaches, neuromonitoring technol-
ogy used, and different duration and onset of autoregu-
lation monitoring. It is unknown what methods best
balance the clinical feasibility and the benefits of such
targets. The most suitable methods might differ by criti-
cally ill sub-population due to differences in practice
setting and pathophysiology. Patterns of blood pressure
fluctuations may differ between the ICU and OR, affect-
ing the yield and prognostic abilities of different target
identification approaches. Some studies challenge the
accuracy of existing algorithm and NIRS in measuring
autoregulation in patients who experienced cardiac arrest
due to potential impairments in oxygen diffusion and
metabolism in this population [83]. Future studies might
take inspiration from studies in critically ill populations
broadly, considering the large quantity of research con-
ducted in cardiac surgery and patients with brain injury,
however, researchers should be sensitive to the differ-
ences in setting and pathophysiology and a likely need to
adapt approaches to their critical ill sub-populations.

Our assessment of demographic predictors highlighted
that were few consistent predictors of autoregulation-
guided MAP targets, despite the wide range of factors
studied in relation to cerebral autoregulation. This may
reflect the fact that different autoregulation monitor-
ing methods are not fully interchangeable, or that MAP
targets are highly individualized and dynamic. It also
highlights the complexity of cerebrovascular control,
which is influenced by multiple interacting physiologi-
cal processes, such as autoregulatory function, cerebral
metabolism, and systemic variables, that may not fol-
low linear or easily modeled relationships. For exam-
ple, recent research shows that cerebral autoregulation
is more effective during rising MAP than falling MAP
over short timescales (10-60 s), possibly due to differ-
ing myogenic and sympathetic activity [84]. This sug-
gests a potential limitation of correlation-based methods,
though it’s unclear if directional sensitivity persists at the
slower timescales used to calculate correlation-based
indices (e.g., 5 min). Future work should aim to better
understand the biological basis of autoregulation esti-
mates and how they relate to other physiological markers,
to guide the development of more reliable and personal-
ized clinical applications.

One of the strengths of this review is its broad scope.
We included diverse patient populations across varying
clinical settings. We have also captured multiple metrics
of individualized blood pressure targets (i.e. MAPopt,
LLA, ULA). Furthermore, we have performed a risk of
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bias assessment for included studies, which improves the
ability to interpret the captured data.

Our review also has several limitations. First, scoping
review methodology precluded the ability to perform
meta-analyses that could further allow the comparison
of findings and address specific questions of interest
(e.g., the frequency of hypo- vs hypertension or varia-
tions in MAPopt across populations). Second, our search
was limited to English-language publications, potentially
excluding relevant studies in other languages.

Conclusion

Technological advancements have made it feasible to
determine personalized MAP targets in critically ill
patients. Most evidence in this emerging field is obser-
vational and shows high variability in MAP values asso-
ciated with intact autoregulation. While some studies
suggest associations with clinical outcomes, methodo-
logical inconsistencies and feasibility challenges, such
as signal loss, variable calculation methods, and inabil-
ity to keep MAP above LLA, limit interpretability and
generalizability. To move the field forward, future stud-
ies should prioritize validating algorithms across diverse
patient populations, standardizing within critically ill
sub-populations, and identifying strategies to overcome
practical barriers to implementation. Efforts should be
tailored to the unique physiological profiles of critically
ill sub-groups and will likely lead to a better understand-
ing of the complex, multifactorial nature of cerebrovas-
cular regulation.

Abbreviations

T8I Traumatic brain injury

SAH Subarachnoid hemorrhage

CPP Cerebral perfusion pressure

ICP Intracranial pressure

MAP Mean arterial pressure

CPPopt Optimal cerebral perfusion pressure

MAPopt Optimal mean arterial pressure

LLA Lower limit of autoregulation

ULA Upper limit of autoregulation

NIRS Near-infrared spectroscopy

TCD Transcranial doppler ultrasound

SO, Regional cerebral oxygen saturation

COx Cerebral oximetry index

Mx Mean blood velocity index

ICU Intensive care unit

PRISMA-Scp  Preferred Reporting Items for Systematic Reviews and Meta-
Analyses for Scoping Reviews

JBI Joanna Briggs Institute

RoB2 Risk of Bias 2 tool

HVx Hemoglobin volume index

CFVx Cerebral flow volume index

PRx Pressure reactivity index

aSAH Aneurysmal subarachnoid hemorrhage

JVPRx Jugular venous pressure reactivity index

JvsaO,Rx Jugular venous saturation pressure reactivity index

HIBI Hypoxic-ischemic brain injury

AUC Area under the curve

AKI Acute kidney injury

MMOM Major mortality and morbidity
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