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Introduction
The limited availability of novel antimicrobials against 
multidrug-resistant Gram-negative bacteria (MDR-GNB) 
has necessitated the reevaluation of older antibiotics [1, 
2]. Polymyxins, including colistin (polymyxin E) and pol-
ymyxin B, were first discovered in 1949 and subsequently 
reclassified by the World Health Organization (WHO) in 
2012 as critically important agents for the treatment of 
MDR-GNB infections, leading to renewed clinical inter-
est [3]. Colistin, a polycationic antimicrobial, interacts 

with negatively charged phosphate groups of lipid A sub-
units within the lipopolysaccharide layer of Gram-nega-
tive bacteria. This interaction disrupts the bacterial outer 
membrane by displacing cations (primarily  Mg2⁺ and 
 Ca2⁺), ultimately causing membrane leakage and bacterial 
death [4]. As a result, polymyxins remain crucial thera-
peutic options for MDR-GNB infections [5].

Colistin is administered as an inactive prodrug, colis-
tin methanesulfonate (CMS) [5]. However, its clini-
cal use is constrained by a narrow therapeutic window, 
with nephrotoxicity and neurotoxicity being the pri-
mary dose-limiting factors, both of which are con-
centration-dependent. Given its pharmacokinetic and 
pharmacodynamic characteristics—exhibiting both 
concentration- and time-dependent activity—colistin’s 
primary pharmacodynamic target is the area under the 
plasma concentration–time curve (AUC), with a recom-
mended 24-h steady-state AUC target of approximately 
50 mg·h/L, corresponding to a steady-state mean plasma 
concentration of ~ 2 mg/L [5].

The emergence of colistin resistance, first reported 
in 2015, has been attributed to the plasmid-mediated 
mobile colistin resistance gene (mcr-1), which encodes 
phosphoethanolamine transferase, conferring resistance 
in certain Gram-negative bacteria. Initially detected in 
Escherichia coli isolates from farm animals, raw meat, 
and humans in China, subsequent studies confirmed 
its global dissemination across Enterobacteriaceae, 
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highlighting the urgency of coordinated international 
efforts to combat resistance [6, 7].

Given these challenges, ensuring that colistin dosages 
exceed the minimal inhibitory concentration (MIC) is 
essential for optimizing therapeutic outcomes [8]. How-
ever, critically ill patients requiring continuous kidney 
replacement therapy (CKRT) are at risk of inadequate 
colistin exposure due to extracorporeal removal of the 
drug, as colistin pharmacokinetics is characterised by 
low volume of distribution (0.3–0.4 L/Kg) and wide free 
fraction ranging between 59 and 74% [9]Therefore, accu-
rate dosing strategies are critical to balancing efficacy and 
toxicity [8].

Recent insights
A recent study by De Pascale et  al. provided valuable 
insights into colistin dosing during CKRT. This study 
included all consecutive patients admitted to three Inten-
sive Care Units (ICUs) who were treated with colistin 
for at least 48  h. Treatment consisted of a 9 MIU load-
ing dose, followed by 6.75 MIU every 12 h (q12h), admin-
istered during CKRT [10]. Serial blood sampling was 
performed after the seventh dose over a 24-h period. A 
total of 20 patients with carbapenem-resistant Acineto-
bacter baumannii ventilator-associated pneumonia were 
enrolled [10].

This investigation focused on the pharmacodynamic 
parameter fAUC0-24/MIC (free AUC over 24 h divided 
by MIC), targeting a value ≥ 12. The findings demon-
strated 100% efficacy for MIC ≤ 2 mcg/mL and 85% 
efficacy for MIC = 4 mcg/mL. However, these doses 
exceeded the toxicity threshold, as the observed mean 
steady-state plasma concentration was higher than the 
recommended 3–4 mcg/mL [10].

The need for higher colistin doses during CKRT may be 
explained by the extensive carrier-mediated tubular reab-
sorption of colistin in the kidneys, a physiological mecha-
nism not replicated by extracorporeal devices currently 
used in clinical practice [10]. Moreover, in patients with 
renal failure, plasma concentrations of colistimethate 
sodium—substantially removed during continuous veno-
venous hemodiafiltration (CVVHDF)—are significantly 
higher than active colistin concentrations due to reduced 
conversion efficiency [11].

Only the unbound fraction of colistin A and B (rang-
ing from 30 to 60%) is dialyzable [8, 12]. Interindividual 
variability in colistin dosing requirements during CKRT 
may stem from factors such as the true unbound fraction 
of colistin, influenced by its primary carrier alpha-1-acid 
glycoprotein concentration, as well as dialysis efficiency 
parameters, including blood and dialysate flow rates [8, 
13, 14]. Additionally, due to colistin’s hydrophobic nature, 
some extracorporeal membranes (e.g., polymethacrylate 

and acrylonitrile) exhibit adsorption-mediated drug 
removal [8, 12–14].

In response to this variability, some researchers have 
proposed a pharmacokinetic model recommending a 
loading dose of 12 MIU, followed by a maintenance dose 
of 6.75–7.5 MIU every 12  h, to achieve a target steady-
state plasma concentration of 2–3 mcg/mL [14]. Similar 
to pharmacodynamic-guided strategies, this approach 
necessitates measuring colistin levels in both plasma and 
dialysis effluent to minimize toxicity and underdosing 
risks [14].

Interestingly, De Pascale et  al. also observed that 
steady-state colistin concentrations were significantly 
lower in patients who recovered renal function compared 
to those who did not. While this finding remains obser-
vational, it suggests a potential relationship between 
renal recovery and colistin pharmacokinetics [9, 10].

Another potential contributor to elevated colistin 
concentrations in CKRT patients may be the concur-
rent administration of high-dose nebulized CMS (5 
MIU every 8 h) via vibrating mesh nebulizers. The study 
authors noted that this adjunctive therapy may have con-
tributed to the unexpectedly high steady-state colistin 
levels, a strategy previously advocated by Boisson et  al. 
[15, 16].

Conclusion
The study by De Pascale et  al. concluded that high-
dose CMS administration in critically ill CKRT patients 
resulted in steady-state concentrations exceeding the 
MIC90 of commonly isolated bacteria but also surpassed 
safety thresholds. These findings suggest that, beyond 
the empirical treatment phase, lower CMS maintenance 
doses should be considered in clinical practice, particu-
larly in the absence of therapeutic drug monitoring or 
alternative antimicrobial options.

Colistin dosing should account for both intravenous 
(IV) and nebulized administration, requiring care-
ful monitoring of colistin levels in plasma and dialysis 
effluent to optimize efficacy while mitigating toxicity. A 
precise and individualized dosing approach is crucial to 
improving patient outcomes while minimizing colistin-
related adverse effects in critically ill CKRT patients.

Practical recommendations for clinicians
1. For IV colistin administration only:

• Loading dose: 12 MIU
• Maintenance dose: 6.75–7.5 MIU every 12 h
• Higher doses may be used mainly in the empirical 

phase due to the risk of overexposure
• Target steady-state concentration: 2–3 mcg/mL
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• Therapeutic drug monitoring in plasma and dialysis 
effluent is essential to minimize toxicity and under-
dosing.

2. For combined IV and nebulized colistin administration:

• Loading dose: 9 MIU
• Maintenance dose: 6.75 MIU every 12 h (q12)
• High-dose nebulized CMS: 5 MIU every 8  h via 

vibrating mesh nebulizers
• Close monitoring of systemic colistin levels is critical 

to prevent excessive drug accumulation.
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