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Abstract 

Transcranial focused ultrasound (tFUS) has emerged as a promising non-invasive neuromodulation technique for dis-
orders of consciousness (DOC). This work critically evaluates tFUS’s potential, highlighting its unique ability to precisely 
modulate deep brain structures, particularly the thalamus, while maintaining non-invasiveness. The mechanisms 
of action span multiple levels, from membrane-level ion channel modulation to network-wide changes in neural 
connectivity. Preclinical and early clinical studies have demonstrated tFUS’s potential to improve DOC outcomes. Pre-
liminary clinical trials in both acute and chronic DOC patients have shown encouraging results, including diagnostic 
category shifts, improvements in behavioral responsiveness, and alterations in thalamo-cortical connectivity. How-
ever, significant challenges remain. These include optimizing stimulation parameters, addressing variability in patient 
responses, and ensuring long-term safety. The current evidence base is limited, necessitating larger, more rigorous 
investigations. Future research should focus on multicenter randomized controlled trials to comprehensively evaluate 
tFUS across different DOC etiologies and chronicity. Key priorities include identifying predictive biomarkers, exploring 
combination therapies, and addressing ethical considerations. While tFUS shows significant promise in DOC manage-
ment, further investigation is crucial to refine its application and establish its definitive clinical role.
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Introduction
Disorders of consciousness (DOC), including coma, 
vegetative state, and minimally conscious state, present 
a significant challenge in clinical neurology [1]. Despite 
advances in diagnosis and supportive care, effective 

treatments for DOC remain limited [2]. In recent years, 
transcranial focused ultrasound (tFUS) has emerged as a 
promising non-invasive neuromodulation technique that 
can modulate deep brain structures in DOC patients, 
potentially improving consciousness and functional con-
nectivity [3–6]. While tFUS has shown promise in several 
other neurological conditions such as Parkinson’s dis-
ease [7], chronic pain [8], essential tremor [9], epilepsy 
[10], and stroke [11], clinical evidence in these disorders 
remains limited compared to DOC, highlighting the need 
for further investigation to establish tFUS’s therapeutic 
role across neurological diseases. In this narrative review, 
we examine current evidence, challenges, and future 
directions to establish a foundation for the clinical trans-
lation of tFUS in DOC management.
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Unique advantages of tFUS in DOC treatment
tFUS utilizes low-intensity ultrasound waves (0.25–
0.5 MHz) delivered through a single-element transducer 
or multi-element array to focally modulate specific brain 
regions (Fig.  1). Its unique ability to target small areas 
(few millimeters in diameter) deep within the brain 
while maintaining non-invasiveness makes it particularly 
promising for DOC treatment [5, 12–14].

The unique properties of tFUS offer significant advan-
tages over other neuromodulation techniques. Unlike 

deep brain stimulation (DBS), which has shown promise 
in DOC but requires invasive surgery, tFUS is associated 
with lower risks and broader applicability [15]. While 
transcranial magnetic stimulation (TMS) and transcra-
nial direct current stimulation (tDCS) are also non-inva-
sive, they primarily affect superficial cortical regions and 
lack the spatial specificity and deep brain targeting capa-
bility of tFUS [16, 17]. This limitation restricts their abil-
ity to directly modulate subcortical structures crucial for 
consciousness, such as the thalamus.

Thus, tFUS uniquely combines non-invasiveness with 
precise targeting of deep brain structures, positioning it 
as a potentially transformative approach in DOC treat-
ment. Its ability to focus on specific deep brain regions 
without affecting intervening tissues offers a level of pre-
cision and safety that is unmatched by other current neu-
romodulation techniques.

Mechanisms of action
The precise mechanisms by which tFUS modulates neu-
ral activity are still under investigation. However, several 
hypotheses have been proposed. One prevailing hypoth-
esis suggests that ultrasound waves cause mechanical 
deformation of neuronal membranes. This deformation 
results in changes in membrane capacitance and the 
opening of voltage-gated ion channels [18, 19] (Fig.  2). 
This can result in altered neural excitability and firing 
patterns. Another hypothesis proposes that ultrasound 
induces cavitation in the lipid bilayer of cell membranes, 
potentially affecting membrane properties and cellular 
signaling [20].

Recent studies have provided insights into the neuro-
physiological effects of tFUS, particularly in the context 

Fig. 1 Schematic illustration of tFUS targeting the thalamus. 
Abbreviation: tFUS: Transcranial focused ultrasound

Fig. 2 Multi-level mechanisms of tFUS neuromodulation. A Membrane-level effects showing ultrasound-induced modulation of ion channels; B 
Synaptic-level changes demonstrating enhanced excitatory and reduced inhibitory transmission; C Network-level modulation of thalamo-cortical 
connectivity. ACC  Anterior cingulate cortex, PFC Prefrontal cortex, M1 Primary motor cortex, tFUS Transcranial focused ultrasound
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of DOC. Thalamo-cortical connectivity, which is cru-
cial for the regulation of consciousness, appears to be a 
primary target of tFUS modulation. Legon et  al. dem-
onstrated that tFUS targeting the thalamus in healthy 
humans could modulate thalamo-cortical functional con-
nectivity, as measured by electroencephalography (EEG) 
and functional magnetic resonance imaging (fMRI) [21]. 
This finding is particularly relevant for DOC, as dis-
rupted thalamo-cortical connectivity is a hallmark of 
these conditions [22, 23].

Furthermore, emerging evidence suggests that tFUS 
may influence multiple pathways relevant to conscious-
ness and recovery. Studies have shown that tFUS can 
enhance dopamine release in the striatum [24], suggest-
ing its potential to modulate neurotransmitter systems 
involved in arousal and consciousness. Additionally, pre-
clinical studies have demonstrated that tFUS can improve 
neurological outcomes through various mechanisms, 
including enhanced cerebral blood flow, reduced neuro-
inflammation, and improved brain edema clearance [25, 
26]. These findings suggest that tFUS may be particu-
larly beneficial in DOC resulting from various etiologies, 
including ischemic injuries and traumatic brain injury.

Interestingly, the effects of tFUS appear to be highly 
dependent on stimulation parameters such as frequency, 
intensity, and duty cycle. Plaksin et al. demonstrated that 
different tFUS parameters could induce either excitatory 
or inhibitory effects on neural activity in mice [27]. This 
parameter-dependent effect offers the potential for pre-
cise tuning of neural modulation, which could be crucial 
for optimizing tFUS protocols in DOC treatment.

Clinical evidence in DOC
The clinical translation of tFUS in DOC began with a 
groundbreaking case report by Monti et  al. in 2016. 
They applied tFUS to the thalamus of a 25-year-old male 
patient with acute DOC, 19  days post-injury, using a 
frequency of 650  kHz and a pulse repetition frequency 
of 100  Hz. The patient showed remarkable improve-
ment, with Coma recovery scale–revised (CRS-R) scores 
increasing from 14–15 to 13–17 post-tFUS. More sig-
nificantly, the patient demonstrated full language com-
prehension and reliable communication three days 
post-tFUS, and attempted to walk five days post-tFUS 
[28]. This initial success demonstrated both the feasibility 
and potential efficacy of tFUS in DOC patients.

Building on this promising result, Cain and colleagues 
conducted a series of systematic investigations that pro-
gressively expanded both the scope and scale of tFUS 
application in DOC. Their research trajectory began with 
a pilot study of three chronic DOC patients [4], evolved 
to include 11 acute DOC patients [29], and culminated 
in a larger cohort study of 10 chronic DOC patients [30]. 

These studies shared a common protocol of targeting the 
left central thalamus, but varied in patient characteristics 
and follow-up duration.

The results across these studies showed a consist-
ent pattern of improvement in a subset of patients. In 
the 11 acute DOC patients, a single tFUS session led to 
significant increases in CRS-R scores (p = 0.014), with 4 
patients (approximately 36%) showing diagnostic cat-
egory improvements (coma to VS, VS to MCS) [29]. In 
the 10 chronic DOC patients, two sessions administered 
one week apart resulted in similar positive outcomes, 
with 4 patients (40%) demonstrating diagnostic improve-
ments (VS/MCS- to MCS + /eMCS) and significant lin-
ear increases in CRS-R scores (p = 0.019 for total score) 
[30]. Importantly, fMRI analyses revealed that behav-
ioral improvements correlated with specific changes in 
thalamic functional connectivity—decreased connectiv-
ity between the targeted thalamus and frontal regions 
(including prefrontal cortex and striatum) coupled with 
increased connectivity with the contralateral motor 
cortex, parietal and occipital lobes in both acute and 
chronic patients [29, 30]. These bidirectional connectiv-
ity changes provide mechanistic support for the observed 
clinical benefits.

Challenges and limitations
While initial tFUS studies in DOC patients show prom-
ise, the current evidence base remains limited. To date, 
only four clinical studies have been published [4, 28–30], 
including one case report and three small cohort stud-
ies with a total of 24 patients (1 patient in the initial 
case report, 3 patients in the first pilot study, 11 patients 
in the acute DOC study, and 10 patients in the chronic 
DOC study). This small sample size and limited number 
of studies represent a significant limitation. Addition-
ally, several other challenges need to be addressed to 
fully harness tFUS’s potential as a therapeutic interven-
tion. The efficacy of tFUS varies across different patient 
subgroups, with patients suffering from traumatic brain 
injury, acute DOC, or in a minimally conscious state 
potentially showing better responses. Younger patients 
and those with preserved thalamo-cortical connections 
might also benefit more from this treatment. However, 
the factors influencing treatment outcomes are not fully 
understood, as evidenced by the study of Cain et  al., 
where one out of three chronic DOC patients exhibited 
no significant improvement after tFUS sessions [4]. This 
variability in patient responses highlights the need for a 
better understanding of the characteristics predicting 
treatment efficacy, which could help refine patient selec-
tion criteria and personalize tFUS protocols (Fig. 3).

A significant challenge in tFUS application is the deter-
mination of optimal stimulation parameters. Current 
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studies have employed a range of frequencies, inten-
sities, and durations, necessitating a systematic com-
parison of their efficacy and safety [31]. Additionally, 
individual variability in skull thickness and density can 
affect ultrasound wave propagation, potentially leading to 
inconsistent tFUS effects across patients [32]. These tech-
nical challenges underscore the importance of developing 
advanced neuronavigation techniques and personalized 
computational models. Such advancements could ensure 
more precise targeting of deep brain structures, poten-
tially improving response rates and minimizing adverse 
effects [21, 33].

While tFUS is generally considered safe, current safety 
assessments in DOC patients have been limited to basic 
vital parameter monitoring and adverse event documen-
tation, with no serious adverse effects reported across 
24 patients in 4 DOC studies [4, 28–30]. However, small 
studies in other neurological conditions have reported 
mild and transient adverse effects, including headache, 
neck pain, somnolence, scalp tingling, and drowsiness, 
typically resolving within 24  h without worsening upon 
repeated stimulation [34–36]. Establishing safety thresh-
olds specific to therapeutic neuromodulation in DOC 

patients, accounting for factors such as skull density, 
repeated exposures, and patient conditions, remains 
crucial. Future DOC studies should implement rigor-
ous safety protocols, including advanced neuroimag-
ing to assess tissue effects, extended follow-up periods 
(6–12 months), and standardized adverse event monitor-
ing [34, 37, 38].

Future directions
Advancing the clinical translation of tFUS for DOC 
requires a comprehensive research strategy centered on 
large-scale, multicenter randomized controlled trials. 
These trials should incorporate rigorous methodological 
standards, including appropriate sample size calculations, 
predefined outcome measures, and proper randomiza-
tion and blinding techniques [39]. Particular attention 
should be paid to controlling potential confounders such 
as spontaneous recovery and concurrent treatments, 
while implementing standardized assessment protocols 
to ensure reliable and comparable results across different 
centers (Fig. 4).

The optimization of tFUS protocols represents another 
crucial research direction. This includes developing 
personalized approaches based on individual patient 
characteristics such as etiology, duration of DOC, and 
neuroanatomical features [40]. The identification of reli-
able biomarkers or clinical characteristics that predict 
treatment response could significantly enhance patient 
selection and treatment outcomes [1].

Exploring combination therapies offers a promising 
avenue for enhancing tFUS efficacy. Future studies should 
investigate potential synergistic effects between tFUS and 
other therapeutic modalities, including pharmacologi-
cal agents (e.g., amantadine, zolpidem) and rehabilita-
tion programs [41]. Such combination approaches could 
potentially provide more comprehensive and effective 
treatment strategies for DOC patients.

As tFUS research advances, addressing ethical, legal, 
and social implications becomes increasingly important 

Fig. 3 Hierarchical challenges of tFUS application in DOC treatment. 
DOC Disorders of consciousness, tFUS Transcranial focused ultrasound

Fig. 4 Key future directions for tFUS in DOC. DOC Disorders of consciousness, tFUS Transcranial focused ultrasound
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[42]. This includes developing guidelines for patient 
selection and informed consent, as well as assessing the 
impact on patients’ quality of life and long-term out-
comes [22]. Engaging diverse stakeholders—including 
healthcare professionals, patient advocates, and policy-
makers—will be crucial for responsible implementation 
of tFUS-based interventions.

Finally, while DOC remains the primary focus, the 
unique capabilities of tFUS suggest potential applica-
tions in other neurological conditions [43, 44]. Expanding 
research into these areas could broaden the therapeu-
tic impact of this technology while providing valuable 
insights for its optimization in DOC treatment [13].

Conclusion
tFUS represents a promising frontier in DOC treatment, 
offering unique advantages through its ability to non-
invasively modulate deep brain structures. Early clinical 
evidence has demonstrated encouraging results in both 
acute and chronic DOC patients, with improvements in 
consciousness levels and functional connectivity. While 
these findings are promising, several key challenges 
remain to be addressed, including optimization of stimu-
lation parameters and understanding patient response 
variability. The path forward requires rigorous clinical 
trials, development of personalized protocols, and care-
ful consideration of safety and ethical implications. As 
research progresses, tFUS has the potential to not only 
transform DOC treatment but also extend its benefits 
to other neurological conditions [45–48], bringing new 
hope to patients and families affected by these devastat-
ing disorders.
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