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Heterogeneity of treatment effect: the case 
for individualising oxygen therapy in critically ill 
patients
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Abstract 

Oxygen therapy is ubiquitous in critical illness but oxygenation targets to guide therapy remain controversial 
despite several large randomised controlled trials (RCTs). Findings from RCTs evaluating different approaches 
to oxygen therapy in critical illness present a confused picture for several reasons. Differences in both oxygen target 
measures (e.g. oxygen saturation or partial pressure) and the numerical thresholds used to define lower and higher 
targets complicate comparisons between trials. The duration of and adherence to oxygenation targets is also variable 
with consequent substantial variation in both the dose and the dose separation. Finally, heterogeneity of treatment 
effects (HTE) may also be a significant factor. HTE is defined as non-random variation in the benefit or harm of a treat-
ment, in which the variation is associated with or attributable to patient characteristics. This narrative review aims 
to make the case that such heterogeneity is likely in relation to oxygen therapy for critically ill patients and that this 
has significant implications for the design and interpretation of trials of oxygen therapy in this context. HTE for oxy-
gen therapy amongst critically ill patients may explain the contrasting results from different clinical trials of oxygen 
therapy. Individualised oxygen therapy may overcome this challenge, and future studies should incorporate ways 
to evaluate this approach.
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Graphical Abstract

Introduction
Oxygen is considered an essential therapy for most 
critically ill patients on intensive care units (ICUs) and 
life-saving for some, especially those with hypoxaemic 
respiratory failure. Additional oxygen is administered 
to supplement the oxygen in inspired air when the lat-
ter is no longer sufficient to maintain normal, or near 
normal, arterial oxygen levels (oxygen saturation of hae-
moglobin [SaO2] or partial pressure of arterial oxygen 
[PaO2]). Traditionally, clinicians have aimed to avoid 
hypoxaemia, when possible, to minimise the risk of cel-
lular hypoxia and the organ dysfunction and failure that 
may accompany this. In practice, this desire to avoid 
hypoxaemia resulted in liberal use of supplemental oxy-
gen, under the assumption that hyperoxaemia was harm-
less [1]. However, outside of intensive care medicine, the 
potential harm caused by high fractional inspired oxygen 
concentrations (FIO2) is well established [2, 3]. Conse-
quently, questions were raised about the safety of using 
liberal concentrations of oxygen in critically ill patients 
[4]. A number of retrospective database analyses dem-
onstrated relationships between oxygenation and mor-
tality [1, 5–8] that led to the concept of a ‘U-shaped’ 
relationship between arterial oxygenation and mortal-
ity (Fig.  1) [4]. What these studies could not consist-
ently answer, however, was the precise dose–response 
relationship and thresholds above which harm would be 
more likely. Importantly, the methods used do not sup-
port causal inference about the relationship between 

oxygenation and mortality. Building on this concept, sev-
eral randomised controlled trials (RCTs) have addressed 
the question of whether more or less oxygen should be 
administered to patients [9–20]. Arguably, these tri-
als have failed to bring us closer to a clear answer to the 
question we are trying to address: ‘how much oxygen 
should I administer to the patient I am caring for’.

This narrative review of the literature aims to discuss 
why we still do not know how much oxygen we should 
administer to critically ill patients, specifically focusing 
on the idea that heterogeneity of treatment effects (HTE) 
for oxygen could be the primary explanation for this.

Oxygen can be harmful
The risks related to severe hypoxaemia require little 
discussion and those associated with excessive oxygen 
administration have been extensively reviewed by oth-
ers [21–23]. In the context of critically ill patients, it is 
important to differentiate the direct effects of high con-
centration oxygen on the lungs (frequently referred to as 
oxygen toxicity) from the systemic effects of hyperoxae-
mia. In healthy humans, detectable oxygen toxicity is rare 
below an FIO2 of 0.5 [24]. The mechanistic explanation 
for pulmonary oxygen toxicity centres on production of 
reactive oxygen species (superoxide ions [O2

.−], hydro-
gen peroxide [H2O2] and hydroxyl radicals [·OH]), which 
induce a state of oxidative stress, leading to lipid peroxi-
dation, protein carboxylation and deoxyribonucleic acid 
oxidation [25]. Systemic hyperoxaemia induces coronary 
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artery vasoconstriction [26], perhaps explaining why sup-
plementary oxygen is not associated with any clinically 
important benefits in normoxaemic patients with acute 
myocardial infarction [27, 28] and may in fact be harm-
ful [29]. Furthermore, humans possess an innate abil-
ity to adapt to moderate sustained hypoxaemia, albeit 
with substantial inter-individual variability in the rate 
and extent of response, as demonstrated when humans 
ascend to high altitude [30–32] and yet they have physi-
ological minimal defence against oxidative stress beyond 
a relatively limited innate antioxidant system.

For acutely unwell adults the evidence to support a 
harmful effect of hyperoxia and/or hyperoxaemia is dif-
ficult to tease out from the literature. Whilst one system-
atic review and meta-analysis pooling data from more 
than 16,000 patients enrolled in 25 studies found liberal 
oxygenation strategies to be associated with increased 
mortality [33], no such association was found in a more 
recent and larger analysis [34].

What have we learned from randomised trials 
of oxygen therapy?
Over the last decade the results of several RCTs evalu-
ating conservative oxygen therapy have been published 
(Table  1). A full systematic review of that literature is 
beyond the scope of this article and is available in previ-
ously published work [35–38]. Most RCTs to date have 
set out to evaluate the benefit of interventions to reduce 
oxygen administration, commonly referred to as con-
servative oxygen therapy. An arterial oxygenation target 
(either PaO2 or SpO2) was used in these trials to encour-
age down-titration of FIO2 in the conservative oxygena-
tion groups. From these trials and systematic reviews, no 
overall signal of benefit or harm has been demonstrated 
for conservative oxygen therapy. The possible reasons for 
this include:

•	 No true signal of benefit or harm exists.

•	 Variation between trials in the definition of conserva-
tive oxygen therapy (i.e. the oxygenation target).

•	 Variation between trials in the administration of oxy-
gen therapy to patients in the comparator (control) 
group.

•	 Insufficient differentiation between intervention and 
comparator group oxygenation targets (including 
overlapping) within trials.

•	 Failure to achieve set oxygenation targets.
•	 Failure to achieve separation of oxygenation indices 

between intervention and comparator groups.
•	 Variation between trials in the type of patients being 

recruited.
•	 The existence of HTE for oxygen.

Only three trials have shown differences in their pri-
mary outcome measure between approaches to oxy-
genation in critically ill adults. The first was in a single 
centre trial conducted in 2010–2012 that allocated 480 
participants on ICUs to conservative or conventional 
oxygenation groups [19]. Mortality was reported as 
11.6% in the conservative and 20.2% in the conventional 
oxygenation groups (p = 0.01). The trial received consid-
erable criticism over its design and the results are not 
in line with those reported by others. The second is the 
HYPERS2S trial in which 442 patients with septic shock 
were recruited between 2012 and 2014 and randomised 
to receive an FIO2 of 1.0 for 24  h (hyperoxia group) or 
have oxygen titrated to achieve an SpO2 of 88–95% 
(described as usual care) along with either hypertonic 
or 0.9% sodium chloride during resuscitation in a 2 × 2 
factorial trial design [20]. This trial was stopped early for 
safety reasons with an excess of deaths in the hyperoxia 
group (not reaching statistical significance) along with a 
higher incidence of serious adverse events. The findings 
from this trial are compelling evidence that a very high 
FIO2 is likely to be harmful to critically ill patients. More 
recently, a trial recruiting 726 patients with COVID-19 
and severe hypoxaemia from 2020 to 2023 reported that 
targeting a PaO2 of 8  kPa resulted in more days alive 
without life support in 90 days than targeting a PaO2 of 
12  kPa [9]. It is therefore possible that in patients with 
COVID-19, there is benefit in adopting a conserva-
tive approach to oxygen therapy. Additionally, in a trial 
recruiting 2040 mechanically ventilated children (aged 
38 weeks corrected gestational age to 15 years) from 2020 
to 2022, targeting an SpO2 of 88–92% resulted in greater 
probability of a better outcome in terms of duration of 
organ support at 30 days or death when compared with 
an SpO2 of > 94% [10]. Thus, whilst most trials to date 
have not demonstrated a difference in outcome between 
‘conservative’ and ‘liberal’ oxygen therapy, interesting 

Fig. 1  The proposed U-shaped relationship between arterial 
oxygenation and harm in an individual critically ill patient.  Adapted 
from Martin et al. [4]
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signals are emerging. In terms of the U-shaped curve 
concept; apart from the HYPERS2S trial, most trial find-
ings only really tell us about a very small section in the 
middle of this conceptual curve, suggesting that this area 
may be a little flatter than previously imagined [39].

Two ongoing trials yet to report their findings may 
make a significant contribution to this field on account of 
their planned sizes. The UK-ROX trial being conducted 
in the United Kingdom has enrolled 16,500 participants 
[40] and the global MEGA-ROX trial is aiming to enrol 
40,000 participants [41]. A priori sub-group analysis 
plans may provide a meaningful understanding of the 
differential effect of conservative oxygen therapy in sub-
populations of critically ill patients, in other words, an 
insight into the heterogeneity of treatment responses to 
oxygen therapy.

Heterogeneity of critically ill patients
We have known for a long time that patients admitted to 
ICUs are extremely heterogeneous; they can present with 
any diagnosis known to us today, spanning the entirety of 
surgery, medicine and mental health [42]. Whilst distinct 
diseases require specific treatments, clinicians are often 
battling diagnostic uncertainty, complex pathophysiol-
ogy, and the sometimes hard to reconcile syndromes that 
we have created in an attempt to overcome these chal-
lenges. This heterogeneity amongst critically ill patients 
has hampered our ability to significantly improve their 
clinical outcomes [43]. The disappointing progress to date 
is not for lack of researcher effort. It is now common to 
see major clinical trials evaluating therapies in critically 
ill patients to be published weekly. Yet in recent decades, 
very few have reported substantial improvements in clin-
ically important outcomes. In 2019, a systematic review 
of RCTs of trials in which any intervention or monitor-
ing system were evaluated in critically ill patients and 
reported mortality as a primary or secondary outcome 
was conducted [44]. A total of 212 trials were included 
of which 170 (80%) reported no difference in mortality, 
27 (13%) a significant reduction in mortality, and 16 (7%) 
an increase in mortality (one study was reported in 2 
groups). Of the 27 trials that showed a reduction in mor-
tality, several (all of which were pharmacological inter-
ventions) could not be replicated in subsequent RCTs. 
This contrasts with the COVID-19 pandemic, where 
participants in RCTs had a unifying diagnosis, thus were 
likely to exhibit considerably less heterogeneity, and sev-
eral pharmacological treatments demonstrated clinical 
benefit [45, 46].

Heterogeneity of treatment effects
HTE is defined as non-random variation in the benefit or 
harm of a treatment, in which the variation is associated 
with or attributable to patient characteristics [47]. Here, 
we make the case that such heterogeneity is likely in rela-
tion to oxygen therapy in critically ill patients and that 
this has significant implications for the design and inter-
pretation of trials of oxygen therapy in this context.

Patients admitted to ICU form a heterogeneous popu-
lation, even when we categorise them into syndromes 
such as sepsis and acute respiratory distress syndrome 
(ARDS). In addition, individuals, even within a given sub-
population, respond differently to identical therapies, an 
example of HTE. In other words, when a treatment is 
administered to a group of patients, some may benefit 
from it, others may be harmed by it, and some may expe-
rience no effect at all.

RCTs are designed to identify a difference in the aver-
age effect of an intervention in one trial group versus no 
intervention in another trial group. The assumption of 
homogeneity of response is an important element of ran-
domised comparisons, whereby the aim of parallel group 
randomisation within studies is to compare two alter-
native approaches based on the assumption that each 
approach will have similar effects in all patients.

Where this assumption is not valid, and there is sub-
stantial variation in patient response to interventions 
such that some patients may be benefiting from a par-
ticular intervention whilst others are harmed, then such 
randomised comparisons are likely to be misleading and 
futile [48]. Fundamentally, fixed numerical targets for 
PaO2 or SpO2 may not make sense in the face of sub-
stantial differences in individual physiology, in which 
case alternative targets for therapy may need to be used, 
based on an approach of endeavouring to identify the rel-
evant target for each individual patient (Fig.  2). Moreo-
ver, amongst critically ill patients, there is wide variation 
in the risk of death and other adverse outcomes, which 
in turn means that there will be differences in the abso-
lute benefit (or harm) any intervention might confer [49]. 
This can lead to scenarios where a trial reports an over-
all benefit of an intervention yet there is no benefit (or 
even harm) in a low-risk subset of the patients; or a trial 
reports no overall benefit of an intervention when con-
siderable benefit actually exists in some high-risk patients 
[50]. Hence, the reported outcomes for a RCT are likely 
over-simplifying the true picture, and we risk discarding 
an intervention with considerable benefit, or accepting 
one that is harmful, to some participants.

The frequently made observation that trials of inten-
sive care interventions commonly result in ‘no difference’ 
between groups may in part reflect these phenomena. It 
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may be that treatments are not actually ineffective, but 
that we are not targeting them effectively to those who 
will benefit from them, whilst avoiding administering 
them to those who may not. The solution to this is effec-
tive individualisation of treatments, a goal that is easy to 
conceptualise but hard to achieve.

Heterogeneity of treatment effects for oxygen
It is highly likely that human responses to supplemental 
oxygen and susceptibility to its side effects varies from 
person to person. At the other end of the oxygenation 
spectrum to hyperoxia, human responses to hypoxia are 
highly variable between individuals; for example, around 
4% of those who successfully summit mount Everest 
(8848  m above sea level, where the equivalent oxygen 
concentration is approximately 7%) do so without the 
use of supplemental oxygen, whilst others are unable to 
reach its base camp at 5330 m. Similarly, susceptibility to 
high-altitude illnesses exhibits high inter-individual vari-
ability [51]. It is not unreasonable to posit that there may 
be much to learn from high altitude, where the dominant 

physiological challenge is hypobaric hypoxia, that may 
help explain phenotypes observed in critically ill patients 
nearer to sea level [52]. The observed inter-individual var-
iation in responses to hypoxia are not explained by physi-
cal fitness or other physiological constructs and are likely 
to have their foundations in individual genetic and epi-
genetic differences [53, 54]. Whilst resilience to hypoxia 
is highly unlikely to be related to resilience to hyperoxia, 
the latter may also exhibit marked differences between 
individuals. Layered on top of our innate responses is the 
additional impact of an individual’s underlying patho-
physiology, their responses to that pathophysiology, and 
potentially demographic factors such as age, sex and eth-
nicity. Therefore, the assumption that every patient will 
respond to hypoxia and supplemental oxygen therapy in 
a comparable way, leading to similar clinical outcomes, is 
unlikely to be valid. It is much more likely that a variety of 
different response profiles exist for different individuals 
(and even within the same individual at different times) 
(Fig. 2). This in turn represents a fundamental challenge 
to the internal validity of parallel group RCTs in this field 
to date.

Subgroup analysis of larger trials of oxygen therapy has 
provided some insight to the question of whether there 
is HTE for oxygen in critically ill adults (Table  2). One 
might expect conservative oxygen therapy to be advanta-
geous post cardiac arrest as one of the key pathophysi-
ological sequelae is hypoxic-ischaemic encephalopathy 
(HIE) following an ischaemia–reperfusion injury. This is 
a scenario where excessive oxygen in the circulation fol-
lowing the return of cardiac output may be detrimental 
to the brain [55]. In an individual-level patient data meta-
analysis of RCTs where patients post cardiac arrest were 
randomised to receive either conservative or liberal oxy-
gen therapy, conservative oxygen therapy was associated 
with a significant reduction in mortality at last follow-up 
compared to liberal oxygen therapy [56]. Yet, in an RCT 
recruiting 789 comatose patients post cardiac arrest, 

Fig. 2  The potential relationship between arterial oxygenation 
and harm in a heterogeneous group of critically ill patients. a, b and c 
Individual responses to given levels of arterial oxygenation. In this 
example, least harm is associated with lower arterial oxygenation 
for individual a and higher arterial oxygenation for individual 
c, whilst b lies between the two. The potential for harm varies 
between individuals in such a way that altering oxygenation in one 
direction for the whole cohort may improve outcomes for some 
individuals but worsen them for others

Table 2  Subgroup analysis findings from trials of conservative oxygen therapy in critically ill adults

HIE hypoxic–ischaemic encephalopathy, COPD chronic obstructive pulmonary disease

Author and year Primary trial Subgroup population Primary findings

Young [57] ICU-ROX [18] Sepsis (n = 251) No difference in 90 day mortality between groups. However, point 
estimates for the treatment effect of conservative oxygen therapy raise 
the possibility of clinically important harm

Young [62] ICU-ROX [18] HIE (n = 166) No difference in death or unfavourable neurological outcomes 
between groups at day 180

Young [63] ICU-ROX [18] Non-HIE acute brain pathology (n = 217) No difference in 180 day mortality between groups

Klitgaard [64] HOT-ICU [16] Active haematological malignancy (n = 168) No difference in 90 day mortality between groups

Crescioli [65] HOT-ICU [16] Post cardiac arrest (n = 355) No difference in 90 day or 1 year mortality between the groups

Nielsen [66] HOT-ICU [16] COPD (n = 563) No difference in 90 day mortality between the groups
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conservative (9 to 10  kPa) and liberal (13 to 14  kPa) 
oxygenation strategies resulted in a similar incidence of 
death or severe disability or coma [14]. It is important to 
note that the achieved separation in oxygenation indi-
ces between the two groups was considerably smaller 
than planned, a common finding in trials of conservative 
oxygen therapy [35]. In this trial, no average PaO2 values 
fell within the target range for the conservative group at 
timepoints within the first 48  h, which makes interpre-
tation of the findings challenging. Whilst no differences 
were detected in primary or secondary outcomes in a 
subgroup of patients with sepsis all the point estimates 
favoured liberal oxygen therapy [57]. This perhaps makes 
sense given the pathophysiology of sepsis is classically 
described as involving tissue dysoxia [58]. Combining the 
data from the HOT-ICU [16] and HOT-COVID [9] trials 
in an individual patient data meta-analysis, the authors 
found HTE in 2 of 14 subgroups [59]. They detected 
lower mortality with conservative oxygen therapy for 
patients with cancer, and an increase in the number of 
days alive without life support for patients with COVID-
19. Similar endeavours to compare, contrast and combine 
data from studies of oxygen therapy would benefit from 
alignment of approaches to data collection for all ele-
ments of trial conduct. The development of a core out-
come set in this field merits consideration [60].

Individualised oxygen therapy
Individualisation of therapy may involve both prediction 
of oxygen response phenotype to guide oxygen therapy 
targets and monitoring of responses to further refine 
individualisation during treatment. For example, demo-
graphic, clinical, genetic and epigenetic data may provide 
useful predictors of likely response. Monitoring of acute 
physiology during oxygen therapy (e.g. microcirculatory 
flow, perfusion, metabolic markers) may further refine 
such targets as the response to therapy becomes clear.

Recently, two trials of conservative oxygen therapy 
were combined into an analysis to determine whether 
an individual patient’s characteristics modified the effect 
of lower of higher oxygenation targets on mortality [61]. 
Using 28  day mortality as the primary outcome, the 
investigators developed a machine learning model to pre-
dict the effect of treatment with a lower vs higher SpO2 
target from one large RCT [12] and externally validated 
the model using data from a second independent clini-
cal trial [18]. They predicted that applying individualised 
SpO2 targets derived from this model to the derivation 
and validation trial participants could have reduced mor-
tality by 6.4% [61]. As increasingly large and rich datasets 
become available from very large trials nearing comple-
tion in this area (e.g. the UK-ROX and Mega-ROX trials) 
it is likely that the performance of such models improves. 

Models like this may contribute to defining the oxygen 
targets for the next generation of trials evaluating indi-
vidualised oxygen therapy. To realise such a vision, it is 
likely that both the sophistication of trial design along 
with the development and validation of oxygen response 
phenotypes and biomarkers (both biochemical and phys-
iological) will need to be achieved.

Conclusions
HTE for oxygen amongst critically ill patients may 
explain the contrasting results from different clinical 
trials of oxygen therapy and overall null effect reported 
to date when data are combined. Individualised oxygen 
therapy may overcome this challenge and future studies 
evaluating oxygen therapy in critical ill patients should be 
designed to enable evaluation of such approaches.
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