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Abstract 

Background Patients supported by extracorporeal membrane oxygenation (ECMO) are at a high risk of brain injury, 
contributing to significant morbidity and mortality. This study aimed to employ machine learning (ML) techniques 
to predict brain injury in pediatric patients ECMO and identify key variables for future research.

Methods Data from pediatric patients undergoing ECMO were collected from the Chinese Society of Extracorporeal 
Life Support (CSECLS) registry database and local hospitals. Ten ML methods, including random forest, support vec-
tor machine, decision tree classifier, gradient boosting machine, extreme gradient boosting, light gradient boost-
ing machine, Naive Bayes, neural networks, a generalized linear model, and AdaBoost, were employed to develop 
and validate the optimal predictive model based on accuracy and area under the curve (AUC). Patients were divided 
into retrospective cohort for model development and internal validation, and one cohort for external validation.

Results A total of 1,633 patients supported by ECMO were included in the model development, of whom 181 expe-
rienced brain injury. In the external validation cohort, 30 of the 154 patients experienced brain injury. Fifteen features 
were selected for the model construction. Among the ML models tested, the random forest model achieved the best 
performance, with an AUC of 0.912 for internal validation and 0.807 for external validation.

Conclusion The Random Forest model based on machine learning demonstrates high accuracy and robustness 
in predicting brain injury in pediatric patients supported by ECMO, with strong generalization capabilities and promis-
ing clinical applicability.
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Introduction
Extracorporeal membrane oxygenation (ECMO) is con-
sidered a life-saving intervention for patients with severe, 
reversible respiratory or circulatory dysfunction that is 
refractory to conventional medical management. More-
over, its indications have expanded to include use as a 
bridge to both cardiac and lung transplants, as well as 
support for lung resections in unstable patients [1–3]. 
Despite advances in ECMO technology, the observed 
mortality rates at hospital discharge for ECMO support 
remain high, with rates of 59–69%, 50–64%, and 45–57% 
in neonates, pediatric patients, and adults, respectively 
[2, 4–6].

One study reported that ECMO complications include 
mechanical device failure, clots, bleeding complications, 
hemolysis, hyperbilirubinemia, brain injury, and renal 
injury [7]. Among these, brain injury is a major contribu-
tor to morbidity and mortality in children on ECMO 
support [8, 9]. The types of neurological complications 
documented in the ELSO registry include brain death, 
clinically and electroencephalographically determined 
seizures, diffuse central nervous system ischemia on 
imaging, central nervous system infarction, and hemor-
rhage, including central nervous system and intraven-
tricular central nervous system hemorrhages [10].

According to a recent study, the incidence of brain 
injury under ECMO support is higher in patients with 
cardiac indications rather than in those with respiratory 
indications. Moreover, the study indicated that neuro-
logic complications increased with decreasing age; for 
example, seizures (clinical or Electroencephalography) 
for cardiac indications were 6.8%, 31.1%, and 74.9% in 
adults, pediatric, and neonatal patients, respectively [4].

While studies focused on the risk factors for brain 
injury in patients supported by ECMO exist [11, 12], few 
have been conducted on brain injury prediction models. 
Given the high mortality associated with ECMO-related 
neurologic complications [13], ensuring early detection 
and treatment of this condition remains crucial. Fur-
thermore, early detection and timely intervention are 
recognized as essential for improving outcomes [14]. 
Therefore, we developed a risk-prediction model to help 
clinicians identify high-risk patients at an early stage, 
thereby enabling timely and individualized measures to 
prevent and treat ECMO-related brain injury.

Methods
Study design and sample sources
Our study follows the Transparent Reporting of a mul-
tivariable prediction model for Individual Prognosis Or 
Diagnosis guideline, which is used to aid the reporting 
of studies developing prediction models [15]. And this 

study was not registered because it is not a clinical trial. 
Retrospectively, up to September 15, 2023, clinical data 
of 1643 patients (Data 1) supported by ECMO were 
extracted from the Chinese Society of Extracorporeal 
Life Support (CSECLS) registry database, which is a 
multi-center observational study. As the ECMO-related 
data, including demographic information, comorbidi-
ties, main diagnosis, pre-ECMO details, ECMO indica-
tion, ECMO support details including complications, 
weaning trial details and outcomes, were submitted on 
a standardized electronic form by 112 ECMO centers 
in China mainland ECMO centers to CSECLS database. 
While external validation data (Data 2) were collected 
from The Seventh Medical Center of Chinese PLA 
General Hospital, Beijing, and The Children’s Hospital 
Affiliated to Zhengzhou University, Zhengzhou. This 
study was approved by the Medical Ethics Committee 
of West China Second University Hospital of Sichuan 
University (Number: 2023–078). Data in this study are 
available from the corresponding author upon reason-
able request.

Inclusion exclusion criteria
Inclusion criteria: 1. Patients aged < 18 years; 2. Patients 
receiving ECMO support; and 3. Patients with missing 
data < 40%.

Exclusion criteria: 1. Patients aged ≥ 18  years; 2. 
Patients with severe multi-organ failure before ECMO; 
3. Patients with brain injury (including intracranial hem-
orrhage, infarction and severe craniocerebral trauma) 
or craniotomy before ECMO support; 4. Patients with 
severe coagulation disorders; and 5. Patients with missing 
data ≥ 40%.

Definition of outcome and data collection
ECMO-related neurological complications include 
ischemic stroke, hemorrhage stroke, brain death, and 
seizures. Methods recommended to diagnose these 
complications include clinical manifestations, electroen-
cephalography, computed tomography (CT)/magnetic 
resonance imaging (MRI), or head ultrasound [16]. Pre-
vious studies have indicated that factors such as prema-
ture birth, lower body weight, congenital heart disease, 
cardiac failure, pre-ECMO cardiac arrest, acidosis, 
hypoxemia, hypocarbia, hypotension, and impairment of 
cerebral autoregulation are associated with neurological 
complications in patients receiving ECMO support [17]. 
Thus, features perceived to be related to neurological 
injury during ECMO support were collected.
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Statistical analysis
Descriptive statistics
Categorical and numerical variables were presented as 
frequencies (percentage) and mean (interquartile range 
[IQR]), respectively. Additionally, to assess the relation-
ships between predictors and brain injury, univariate 
analysis was conducted using the Chi-squared Test (for 
categorical data where all frequencies exceed 5) or Fish-
er’s Exact Test (for categorical data with one or more fre-
quencies below 5) and the Wilcoxon rank-sum test (for 
data with non-normal distribution) as appropriate. A 
priori significance was set at P < 0.05.

Data preparation
The original data1 contained 212 features, and any fea-
tures or patients with over 40% missing values were 
removed from the dataset, leaving 178 features and 
1633 patients. Also, when data 2 shows poor data qual-
ity (missing value was too higher), the data processing 
method was the same as in data 1. The remaining missing 
values were imputed using several modern imputation 
methods, including missForest [18, 19], k-nearest neigh-
bor, and multiple imputation using chained equations 
[20].

Notably, the classes were highly skewed, as the inci-
dence of brain injury was 11.1%; thus, the follow-
ing approaches were applied to handle this condition: 

synthetic oversampling of the minority class using 
the synthetic minority oversampling technique algo-
rithm (SMOTE) [21]; and adaptive synthetic sampling 
(ADASYN), an advanced oversampling technique, which 
generates synthetic instances for the minority class. 
This method adapts the creation of synthetic samples 
based on the local density of instances, thereby enhanc-
ing the model’s performance in managing imbalanced 
data [22]. Tomek Links, an extensively used under-sam-
pling method, effectively reduces noise and borderline 
instances in the majority class, thus minimizing over-
fitting and bias [23]. SMOTE + Tomek Links (SMO-
TETomek) combines SMOTE and Tomek Links, with the 
benefit of mitigating overfitting and underfitting issues 
[24].

However, these methods are only applicable to con-
tinuous variables, and face challenges when dealing with 
categorical variables. Therefore, one-hot coding on the 
categorical variables was applied to enable it to proceed. 
However, one-hot encoding increases the dimensionality 
of the data and may result in inaccurate distance calcu-
lations. Another synthetic minority oversampling tech-
nique for nominal and continuous features (SMOTE_NC) 
is suitable for handling datasets containing both numeric 
and categorical variables [25]. Further technical details 
and the entire machine-learning pipeline are presented in 
Fig. 1.

Fig. 1 Machine learning pipeline
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Feature selection
For feature selection, the number of features was prede-
termined to be 15 to balance the information gain and 
complexity of data acquisition. Until this step, data pro-
cess was done in a supervised manner to avoiding data 
leakage. First, the features were filtered based on data 
quality and other concerns, and features with low vari-
ance and high collinearity (r > 0.7) were removed [26]. 
Finally, we apply recursive feature elimination to select 
features. In the RFE process, both a logistic regression 
model and a linear support vector machine were fitted 
to the training dataset. For each model, five features with 
the smallest coefficients were identified, and from those 
common to both models, one was selected for elimi-
nation based on our general feature selection strategy 
(explainability, face validity, potential causal relationship 
with brain injury, and ease/reliability of data acquisition). 
This process was continued until a final set of 15 features 
remained [27].

Model construction
Ten machine learning (ML) algorithms, including Ran-
dom Forest (RF), Generalized Linear Model (GLM), Sup-
port vector machine (SVM), Gradient boosting machines 
(GBM) [28, 29], eXtreme Gradient Boosting (XGBoost) 
[30], Light Gradient Boosting Machine (LGBM), Naive 
Bayes, Neural Networks, Decision tree (DT) [31], and 
AdaBoost [32], were applied to develop the prediction 
model of brain injury in children and neonates on ECMO 
support.

Model development, validation and assessment.
The data were randomly partitioned into training (70%) 

and testing (30%) sets to avoid overfitting in the model 
predictions and ensure robust generalization during 
testing [33]. To train these (ML) models (with different 
methods balancing the training sets), the training set was 
employed in a double-nested cross-validation process, 
which included five k-fold cross-validation loops (with 
k = 5 in each loop). These loops were utilized for hyper-
parameter optimization, probability calibration, and to 
obtain an unbiased and conservative performance esti-
mate [34].

We trained these ML models using different methods 
to balance the training data. The final model was deter-
mined by the better receiver operating characteristic 
curve of the testing data. Results were considered sta-
tistically significant if the p value was < 0.05. The perfor-
mance of the final model was assessed using the AUC, 
accuracy, specificity, sensitivity, positive predictive value, 
negative predictive value, receiver operating characteris-
tic curve, precision-recall curve, and balanced accuracy 
using a confusion matrix. The testing data were used for 
internal validation, and the validation data were applied 

to this model for external validation. The feature impor-
tance of the predictive model performance was estimated 
and validated using the RFE technique, logistic LASSO, 
and Boruta methods [35].

Explainability
Random forest feature selection was applied to iden-
tify the most to least important features for classifica-
tion [36]. Regarding the explainability of the ML models, 
Shapley Additive Explanations (SHAP), a model-agnostic 
explanation method, was applied to interpret the results 
from a predictive model. Specifically, the SHAP values 
from the ML feature space were transformed to the cor-
responding clinical variable space, where each SHAP 
value was mapped back to the original variables, and a 
SHAP summary plot was drawn to visualize the contri-
bution of the feature to the final model’s output [37, 38].

R software (version 4.3.3) was applied for all statisti-
cal analyses, model development, validation and figure 
drawing. And the key analysis code was reported in Sup-
plementary files.

Results
Characteristics of the study population
The baseline of the patients (Data 1) supported by ECMO 
is shown in Table 1, with the missing value percentage in 
Table S1. The characteristics of the validation data (Data 
2) are shown in Table  2. In Data 1, nine patients were 
excluded due to brain injury before ECMO support, and 
one patient was excluded due to missing values larger 
than 40%. Finally, 1633 patients were included in this 
study for model construction.

In detail, patients with brain injury show a lower age 
(71.7 [73.7] vs 46.4 [58.3] months, p < 0.001), height 
(103.55 [90] vs 89.87 [60] cm, p < 0.001), and weight (26.66 
[34.5] vs 15.36 [15.5] Kg, p < 0.001); while the sex shows 
no difference (529 [36.43%] vs 67 [37.02%] in female and 
923 [63.57%] vs 114 [62.08%] in male, p = 0.94). Moreover, 
circulation status before ECMO, including systolic blood 
pressure (SBP) and diastolic blood pressure (DBP), was 
significantly lower in patients with ECMO-related brain 
injury than in those without (p < 0.001); while the heart 
rate (HR) shows no significant difference. In addition, 
the pH, partial pressure of oxygen (PO2), partial pressure 
of carbon dioxide (PCO2), and lactate (Lac) in patients 
with ECMO-related brain injury before installation also 
showed a significant decrease than without brain injury 
(all p < 0.01). After ECMO, the brain injury group contin-
ued to show worse metabolic and respiratory conditions, 
with significantly lower pH and higher levels of PCO2 
and Lac (all p < 0.01). Moreover, ECMO flow at the 4th 
hour was lower in brain injury patients (p < 0.001).
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Table 1 Characteristic of the cohorts

* This P value was calculated based on V-A and V-V only; SD: Standard deviation; IQR: Interquartile range; ECMO: extracorporeal membrane oxygenation; SBP: systolic 
blood pressure; DBP: diastolic blood pressure; HR: heart rate; PH: potential of hydrogen; HCO3: Hydrogen carbonate; PO2: Partial pressure of oxygen; PCO2: Partial 
pressure of carbon dioxide; Lac: Lactic acid; ECMO models: V-A: Veno-artial; V-V: Veno-venous; A-V: Arterio-venous; V-A-V: veno-arterial-venous; V-V-A: Veno-venous-
arterial; ECPR: Extracorporeal cardio-pulmonary resuscitation

Characteristic N = 1633 Non-brain injury 
(n = 1452)

Brain injury (n = 181) P value

Age, mean (SD), m 68.87 (72.54) 71.7 (73.7) 46.4 (58.3)  < 0.001

SEX (%) Female 596 (36.50) 529 (36.43) 67 (37.02) 0.94

Male 1037 (63.5) 923 (63.57) 114 (62.08)

Height, median (IQR), cm 95(86) 103.57 (90) 89.88 (60)  < 0.001

Weight, median (IQR), kg 14.3(32.5) 26.66 (34.5) 15.36 (15.5)  < 0.001

Before ECMO installation

 SBP, median (IQR), mmHg 60 (35) 62.71 (34) 54.48 (30)  < 0.001

 DBP, median (IQR), mmHg 40 (20) 39.37 (20) 34.11 (18.08)  < 0.001

 HR, median (IQR), beat/min 135 (68) 120.27 (62.15) 119.12 (97) 0.45

 PH, median (IQR) 7.29 (0.22) 7.26 (0.21) 7.22 (0.26)  < 0.001

 HCO3, median (IQR), mmol/L 20.36 (8.7) 20.62 (8.42) 21.8 (10.7) 0.60

 PO2, median (IQR), mmHg 75.04 (78) 103.2 (76.61) 92.22 (68)  < 0.01

 PCO2, median (IQR), mmHg 43 (17.86) 47.09 (17.07) 52.50 (25.1)  < 0.01

 Lac, median (IQR), mmol/L 5.7 (8.16) 7.13 (7.81) 9.02 (9.91)  < 0.002

After ECMO installation

 PH, median (IQR) 7.38 (0.11) 7.37 (0.11) 7.34 (0.11)  < 0.01

 HCO3, median (IQR), mmol/L 22.51 (5.6) 22.19 (5.55) 22.32 (6.02) 0.93

 PO2, median (IQR), mmHg 151.33 (107.77) 159.56 (112.79) 156.29 (112.76) 0.69

 PCO2, median (IQR), mmHg 39.17 (7.29) 39.06 (7.5) 41.42 (7.6)  < 0.001

 Lac, median (IQR), mmol/L 4.42 (6) 6.06 (5.81) 7.57 (6.84)  < 0.001

 ECMO flow 4 h, median (IQR), L/min 1.2 (1.6) 1.54 (1.7) 1.22 (1.1)  < 0.001

ECMO model

 V-A (%) 1463 (89.59) 1289 174  < 0.01*

 V-V (%) 154 (9.43) 148 6

 A-V (%) 3 (0.18) 3 0

 V-A-V (%) 6 (0.37) 6 0

 V-V-A (%) 7 (0.43) 6 1

Clinical indications  < 0.001

 Circulation (%) 1127 (69.01) 1003 124

 Respiratory (%) 455 (27.86) 404 51

 ECPR (%) 249 (15.25) 197 52

 CO2 removal (%) 8 (0.48) 6 2

ECMO assist time, median (IQR), Hours 115.37 (114.92) 154.89 (115.45) 149.74 (110.37) 0.8

Bleeding complication (%) No 1132 1053 (72.52) 79 (30.38)  < 0.0001

Yes 501 (30.68) 399 (27.48) 102 (69.62)

Pulmonary complication (%) No 1561 1395 (96.07) 166 (91.71)  < 0.05

Yes 72 (4.41) 57 (3.93) 15 (8.29)

Extremity complications (%) No 1543 1372 (94.49) 171 (94.48) 1

Yes 90 (5.51) 80 (5.51) 10 (5.52)

Machine Complications (%) No 1449 1301 (89.60) 148 (81.77)  < 0.01

Yes 184 (11.27) 151 (10.40) 33 (18.23)

Outcome  < 0.001

 Death during assistance (%) 296 (18.08) 254 (17.49) 42 (23.20)

 Death after weaning (%) 402 (24.57) 340 (23.42) 62 (34.25)

 Survive discharge (%) 935 (57.35) 858 (59.09) 77 (42.54)
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Regarding the ECMO modes, the V-A mode 
accounted for 89.59%, whereas the V-V mode 
accounted for 9.43%. The remaining three modes col-
lectively account for less than 1% of the total. Conse-
quently, we focused our analysis on the brain function 
outcomes in the V-A and V-V modes. Statistical analy-
sis revealed a significant difference in the incidence of 
neurological complications between the two modes 
(p < 0.01). Regarding the indications for ECMO sup-
port, 69.01% and 27.86% of patients used ECMO for 
circulatory and respiratory reasons, respectively. More 
importantly, the results showed a statistically signifi-
cant association between the occurrence of brain injury 
and patient outcomes during assistance. Specifically, 
the mortality rates (including death during assistance 
and death after weaning) were higher among patients 
who developed brain injury. Additionally, there is 

no significant difference between the training data 
and testing data in the main included characteristics 
(shown in Table S2).

Notably, the characteristics of Data 2 differ signifi-
cantly from those of Data 1. In Table 2, the age, height, 
and weight of Data 2 are significantly lower than those 
of Data 1, with p-values of 3.71E-15, 3.33E-11, and 
5.27E-12, respectively. Additionally, circulation met-
rics (SBP, DBP, and HR), blood gas parameters (HCO3 
and PO2), and ECMO flow at 4 h also show significant 
differences between the two datasets. Finally, the inci-
dence of brain injury in the two groups was signifi-
cantly different: 11.08% in Data 1 and 18.83% in Data 2 
(p = 6.47E-03).

Feature selection
Our models included the following features: height, age, 
worst HR before installation, lowest DBP (before instal-
lation), worst HCO3 6  h before installation, worst Lac 

Table 2 Comparison of characteristic of external data and internal data

SD: Standard deviation; IQR: Interquartile range; ECMO: extracorporeal membrane oxygenation; SBP: systolic blood pressure; DBP: diastolic blood pressure; HR: heart 
rate; PH: potential of hydrogen; HCO3: Hydrogen carbonate; PO2: Partial pressure of oxygen; PCO2: Partial pressure of carbon dioxide; Lac: Lactic acid; ECMO models: 
V-A: Veno-artial; V-V: Veno-venous; A-V: Arterio-venous; V-A-V: veno-arterial-venous; V-V-A: Veno-venous-arterial; ECPR: Extracorporeal cardio-pulmonary resuscitation

Characteristic Internal data n = 1633 External data n = 154 P value

Age, mean (SD), month 68.87(72.54) 32.02(49.25) 3.71E-15

Female (%) 596(36.50) 54(35.06) 0.79

Height, median (IQR), cm 102.06(86) 78.87(49.5) 3.33E-11

Weight, median (IQR), kg 25.41(32.5) 12.44(11.6) 5.27E-12

Before ECMO installation

SBP, median (IQR), mmHg 61.80(35) 68.74(35.81) 0.0076

DBP, median (IQR), mmHg 38.79(19.67) 43.57(21.50) 0.0072

HR, median (IQR), beat/min 120.14(68) 135.49(48.50) 0.0135

PH, median (IQR) 7.25(0.22) 7.29(0.20) 0.29

HCO3, median (IQR), mmol/L 20.75(8.64) 22.32(9.85) 0.02

PO2, median (IQR), mmHg 101.98(76) 79.55(45.75) 1.92E-06

PCO2, median (IQR), mmHg 47.69(17.86) 51.52(27.57) 0.153

Lac, median (IQR), mmol/L 7.34(8.16) 7.33(7.53) 0.66

After ECMO installation

pH, median (IQR) 7.36(0.11) 7.43(0.13) 1.91E-11

HCO3, median (IQR), mmol/L 22.20(5.6) 24.18(5.65) 3.05E-04

PO2, median (IQR), mmHg 159.2(107.77) 130.40(121.88) 6.05E-08

PCO2, median (IQR), mmHg 39.32(7.29) 37.89(15.4) 0.015

Lac, median (IQR), mmol/L 6.23(6) 5.92(6.39) 0.275

ECMO flow 4 h, median (IQR), L/min 1.5(1.6) 0.89(0.88) 6.77E-12

ECMO model 0.55

V-A (%) 1463(89.59) 145(94.16)

V-V (%) 154(9.43) 9(5.84)

A-V (%) 3(0.18) 0

V-A-V (%) 6(0.38) 0

V-V-A (%) 7(0.42) 0

Brain injury 181(11.08) 29(18.83) 6.47E-03
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6  h before installation, worst PCO2 6  h before installa-
tion, “clinical Indication 4” (ECPR), septicemia, cardiac 
arrest before ECMO, “ECMO catheter method 2” (Per-
cutaneous), “ECMO catheter method 3” (surgical inci-
sion), “machine complications Types 32” (Thrombus), 
“Bleeding complications” (have or not), “bleeding compli-
cations32” (bleeding complications other than gastroin-
testinal bleeding, bleeding at intubation, surgery-related 
bleeding, hemolytic FHb > 50 mg/dl, and DIC).

Model performance
In Fig. 2, the results show that the ROC curves and AUC 
values of the ML methods were combined with meth-
ods to tackle class imbalance. As clearly shown in this 
figure, regardless of the ML methods that were used, 
data processed by ADASYN had the best performance 
regarding AUC, while SMOTE and SMOTETomek 
methods had a relatively low AUC. Additional details 
are provided in Table  S3. Moreover, regardless of the 
method used to counter the effects of class imbalance 

problems, we observed that Random Forest showed the 
best performance in terms of AUC.

The best prediction performance was achieved using 
the random forest method combined with the ADASYN 
method. The AUC was 0.912 (95% CI, 0.871–0.953), as 
shown in Fig. 3A). The performances of all ML models 
(trained by data balanced by ADASYN) are presented 
in Table  3. Specificity and sensitivity, the common 
metrics used for evaluating the utility of binary classi-
fication models in medical applications, were selected, 
and the confusion matrix showed a specificity of 0.90 
and sensitivity of 0.70 (Fig.  3B). The model obtained 
an accuracy of 0.879, with a false positive rate, false 
negative rate, and F1 values of 0.037, 0.557, and 0.931, 
respectively. The positive predictive value (PPV) and 
negative predictive value (NPV) values were 0.963 and 
0.443, respectively. The Brier score was 0.108. Moreo-
ver, the positive likelihood ratio and negative likelihood 
ratio were 14.551 and 0.555, respectively.

Fig. 2 ROC curves of machine learning methods with different methods tackling data imbalance; A. ADASYN; B. SMOTE_NC; C. Tomeklinks; D. 
SMOTE; E. SMOTETomek; F. Nearmiss
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Fig. 3 Model diagnostics for the random forest machine algorithm combined with ADASYN resampling technique. A. The receiver operating curve 
of internal validation; B. Pooled normalized confusion matrix; C. Feature importance based on random Forest algorithm. D. SHAP dependence plot 
for the seven continuous features of the model. The x-axis represents the actual values and the y-axis represents the SHAP values. E. Probability 
density plot of internal validation. F. Decision curve analysis of internal validation
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Of the included fifteen features influencing the pre-
dictions, seven were continuous features. According to 
the SHAP framework, which is presented in Fig.  3D, 
both the SHAP value and feature value are presented 
to illustrate the contribution of features. Specifically, 
Fig.  3C shows the feature importance calculated from 
the random forest model using the Gini impurity 
reduction as a metric. The results show that ‘HCO3 
6 h before installation’, ‘Lac 6 h before installation’, and 
‘PCO2 6  h before installation’ are the most important 
features and play a crucial role in the classification task 
of the model. They contribute the most to reducing 
data impurities and improving classification accuracy.

The probability density plot (Fig.  3E) shows that the 
predicted probabilities for the majority of true negative 
samples are concentrated between 0 and 0.3, whereas 
the predicted probabilities for true positive samples 
predominantly fall within 0.6–1. Although there is a 
clear separation between the predicted probabilities 
of the most positive and negative cases, a degree of 
overlap exists within the probability range of 0.3–0.6. 
The decision curve analysis (Fig.  3F) indicated that in 
contrast to the ‘Treat All’ and ‘Treat None’ strategies, 
over the wide threshold range of up to 0.9, the net ben-
efit predicted by the model (blue curve) is significantly 
higher than that of the Treat All (red curve) and Treat 
None (green curve) strategies. While, with the rise of 
threshold probability, the net benefit is decreasing, 
and the cost: benefit ratio increased rapidly. Moreo-
ver, after the application of the Platt Scaling calibration 
method (Figure  S1 A and B), the predicted probabili-
ties of the model were closer to the actual frequency of 
occurrence.

External validation performance
External validation was performed using Data 2. The 
ROC curve for this model, shown in Fig.  4A, achieved 
an AUC of 0.807 (95% confidence interval: 0.714–0.899) 
on the external validation dataset. Furthermore, the nor-
malized confusion matrix for the classification model, 
illustrated in Fig. 4B, indicates a sensitivity of 0.83 and a 
specificity of 0.63 on the external validation dataset.

Discussion
In this study, we developed a fairly accurate ML tech-
nique to estimate the individual risk of brain injury in 
children supported by ECMO. To our knowledge, this is 
the first model to predict the occurrence of brain injury 
in pediatric patients under ECMO support, achieving an 
AUC of 0.912 in internal validation and 0.807 in external 
validation. The model incorporates 15 variables, with 12 
could be collected before ECMO installation and three 
representing ECMO-related complications. This suggests 
that early patient information and the emergence of com-
plications can help predict the onset of ECMO-related 
brain injury. So that timely interventions, such as opti-
mizing anticoagulation and enhanced neurological mon-
itoring, could be given to high-risk patients to improve 
treatment strategies and long-term prognosis.

ML techniques have been extensively used to develop 
predictive models for various clinical scenarios, includ-
ing brain injury. For instance, in a retrospective case–
control study, ML and multivariable logistic regression 
models were developed to predict moderate-to-severe 
traumatic brain injury in pediatric patients [39]. A light 
gradient boosting machine model was developed to 
help identify patients with sepsis-associated acute brain 
injury [40]; and deep transfer learning reliably identified 
normal-appearing HIBI on HCT performed within 3 h of 

Table 3 Performance of internal validation models (using data balanced by ADASYN method)

AUC Area under the curve; AUPRC: the area under the precision-recall curve; TPR: True positive rate; TNR: True negative rate; FPR: False positive rate; FNR: False 
negative rate; PPV: Positive predictive value; NPV: Negative predictive value; AIC: Akaike Information Criterion; PLR: Positive likelihood ratio; NLR: Negative likelihood 
ratio

Model AUC AUPRC Accuracy TPR TNR FPR FNR PPV NPV F1 AIC Brier Score PLR NLR

RF 0.912 0.670 0.879 0.900 0.700 0.037 0.557 0.963 0.443 0.931 190.753 0.108 14.551 0.555

XGB 0.867 0.423 0.791 0.800 0.720 0.038 0.710 0.962 0.290 0.873 244.613 0.137 5.622 0.756

LGB 0.840 0.433 0.804 0.825 0.620 0.050 0.713 0.950 0.287 0.883 257.834 0.135 7.675 0.722

DT 0.655 0.184 0.712 0.736 0.500 0.072 0.823 0.928 0.177 0.821 312.022 0.202 2.350 0.901

SVM 0.810 0.372 0.777 0.795 0.620 0.052 0.744 0.948 0.256 0.865 266.943 0.160 5.177 0.783

NaiveBayes 0.704 0.257 0.816 0.861 0.420 0.071 0.744 0.929 0.256 0.894 297.572 0.147 4.408 0.747

NN 0.835 0.334 0.779 0.790 0.680 0.044 0.730 0.956 0.270 0.865 258.970 0.165 6.444 0.763

GLM 0.718 0.288 0.697 0.708 0.600 0.060 0.810 0.940 0.190 0.808 294.173 0.200 3.113 0.863

GBM 0.686 0.203 0.808 0.856 0.380 0.076 0.768 0.924 0.232 0.889 308.991 0.243 2.547 0.910

AdaBoost 0.789 0.360 0.785 0.806 0.600 0.053 0.739 0.947 0.261 0.871 279.334 0.151 4.342 0.799
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return of spontaneous circulation in comatose survivors 
of cardiac arrest [41]. Furthermore, a neural network was 
applied to predict radiographic brain injury in pediatric 
patients treated with ECMO, thereby achieving an AUC 
of 0.76, 73% sensitivity, and 80% specificity [42].

Moreover, a brain injury risk prediction model for 
adult patients on ECMO support was published earlier 
this year [43]. In that study, a machine learning approach 
was employed to predict neurological complications in 
ECMO patients, revealing that longer ECMO duration, 
older age, and higher 24-h ECMO pump flow were asso-
ciated with acute brain injury. However, despite utilizing 
four different machine learning methods to develop the 
prediction model, the reported performance was subop-
timal, with an AUC of only 0.67. Furthermore, the stand-
ard feature selection process was inadequate, leading to a 
large number of features in the prediction model, which 
could limit its usability.

In addition to brain injury, several studies have focused 
on predicting outcomes in patients receiving ECMO. To 
begin with, one single-institution study [44], published in 
2020 used features such as lactate, age, total bilirubin, and 
creatinine to predict survival to discharge. Another study 
[45], based on data from the international Extracorporeal 
Life Support Organization (ELSO) registry, aimed to pre-
dict in-hospital mortality. Additionally, in Abbasi’s study 
[46], applied machine learning to predict ECMO compli-
cations, including hemorrhage and thrombosis; however, 
the results of this study were not fully reported.

Unlike previous studies, involving 1,633 pediatric 
patients from 112 centers, our research is a multicenter 
study in the model development process and involved 
external validation. During model construction, five 
imputation methods were tested for handling missing 

values, with MissForest demonstrating the best per-
formance regarding AUC and the area under the pre-
cision-recall curve (AUPRC) (Table  S4). Subsequently, 
ten ML methods were evaluated using data balanced by 
six different techniques. The random forest model bal-
anced with ADASYN exhibited the best performance.

In patients with and without brain injury, the clinical 
characteristics showed significant differences. Among 
the 15 included features, arterial blood gas and hemo-
dynamic status indicators including ‘HCO3 6  h before 
installation’, ‘Lac 6 h before installation’, ‘PCO2 6 h before 
installation’, ‘cardiac arrest before ECMO’, ‘clinical indica-
tion 4 (ECPR)’, ‘worst HR before (installation)’ and ‘low-
est DBP before installation’ (also presented in Fig.  2C) 
were notably important for the occurrence of brain 
injury in pediatric s supported by ECMO. While causality 
could not be determined from this analysis, these find-
ings suggest that focusing on hemodynamic parameters 
may be a promising avenue for future research. Previous 
studies have reported that these features are related to 
acute brain injury in ECMO patients [2, 47–49]. Demo-
graphic information such as age and height indicated that 
patients with brain injuries were generally smaller, align-
ing with previous research showing a higher incidence in 
neonates. Additionally, bleeding complications, machine-
related thrombus, septicemia, and ECMO catheter 
methods (percutaneous and surgical incision) align with 
previous research, suggesting that coagulation distur-
bances are associated with brain injury [50, 51]. Thus, it 
may suggest that adjusting anticoagulation strategies may 
not only reduce the occurrence of bleeding complications 
but also reduce the occurrence of brain injury [52].

The model demonstrates superior performance 
through several evaluation metrics, particularly when 

Fig. 4 Performance of RF model on validation data. A. The receiver operating curve of external validation; B. Pooled normalized confusion matrix
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handling positive and negative sample-imbalanced data. 
Its AUPRC was significantly higher than that of the other 
models, indicating that it performed outstandingly in 
identifying positive samples. Additionally, the model’s 
precision was high, demonstrating its excellent perfor-
mance in reducing false positives and false negatives. 
The Akaike information criterion (AIC) and Brier scores 
further supported the stability and generalizability of the 
model. Moreover, the highest PLR and lowest NLR of RF 
model among these models also indicated that the appli-
cation of our model was superior to identify the occur-
rence of brain injury. While the NPV of the model was 
low, indicating that room for improvement exists in pre-
dicting negative-class samples, the model shows strong 
applicability and reliability in prediction tasks.

Several neuromonitoring techniques are available for 
patients receiving ECMO. Head Ultrasound and near-
infrared spectroscopy are non-invasive, portable, and 
cost-effective methods; however, they have limitations 
regarding sensitivity and reproducibility. Conversely, 
head CT and MRI offer high sensitivity for detecting 
structural changes, with MRI avoiding radiation. How-
ever, they are expensive and require sedation. Electroen-
cephalography provides crucial cerebral activity data but 
requires skilled interpretation and can be affected by arti-
facts and sedation [53].

Our study also had several limitations. First, the exter-
nal validation results significantly differed from the inter-
nal results, likely because of the significant differences 
between Data 1 and Data 2, including population com-
position and clinical characteristics, as shown in Table 2. 
Furthermore, as our study was retrospective, despite the 
promising results from both internal and external vali-
dations, additional cohort and prospective studies are 
required to strengthen the evidence and confirm the 
clinical utility of the model. Moreover, algorithmic bias is 
unavoidable in the process of model development. Sub-
group analyses based on populations (such as neonates 
and pediatric patients), indications, and ECMO types 
were not conducted because of the limited number of 
cases in each subgroup; hence, the clinical application of 
the model may be limited in some aspects.

Conclusions
We developed a clinical model using ML to predict 
the occurrence of brain injury in children supported 
by ECMO. This model achieved a considerable AUC 
(0.912). Notably, 12 of the 15 included features can 
be collected in the early stages of ECMO, making the 
model both efficient and easily applicable. Thus, col-
lecting these included features and applying the model 
would help clinicians to identify children at risk of 
brain injury early and provide valuable insights for 

the treatment of ECMO-related brain injury. Fur-
ther research is required to validate and calibrate this 
model.
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