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Abstract 

Background Limited data is available to evaluate the burden of device associated healthcare infections (HAI) [central 
line associated bloodstream infection (CLABSI), catheter associated urinary tract infection (CAUTI), and ventilator asso-
ciated pneumonia (VAP)] in low and-middle-income countries. Our aim is to investigate the population attributable 
mortality fraction and the absolute mortality difference of HAI in a broad population of critically ill patients from Brazil.

Methods Multicenter cohort study from September 2019 to December 2023 with prospective individual patient data 
collection. VAP, CLABSI, and CAUTI were diagnosed by each center in accordance with Brazilian regulatory agency 
guidance. If a patient fulfilled all diagnostic criteria, he was deemed to have Confirmed HAI. An adjusted disability 
multistate model was used to evaluate the population attributable in-hospital mortality fraction (PAF) and the abso-
lute in-hospital mortality difference (AMD).

Results A total of 128,247 patients were included. 4066 (3.2%) distinct patients had at least one diagnosis of HAI 
(1493 CLABSI, 433 CAUTI, 2742 VAP, and 435 patients with more than one HAI) during the ICU stay. The PAF was 3.89% 
(95% CI 3.68–4.11%) for HAI, 2.16% (2.05–2.33%) for VAP, 1.2% (1.08–1.32%) for CLABSI, 0.11% (0.07–0.16%) for CAUTI, 
and 0.33% (0.26–0.4%) for ≥ 2 HAI. The AMD for HAI was 33.69% (95% CI 32.27–35.33%), 29.01% (27.15–30.98%) for VAP, 
31.64% (29.3–34.81%) for CLABSI, 9.94% (3.88–15.54%) for CAUTI and 35.6% (28.93–42.99%) for ≥ 2 HAI.

Conclusions Device-associated HAI significantly contribute to hospital mortality and impose a high excess risk 
of death for critically ill patients.
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Background
Healthcare-associated infections (HAI) are the most 
common adverse event in hospitalized patients world-
wide [1] and are associated with increased mortality 
[2–4]. Although the burden of HAI in high-income 
countries is well-documented, limited data is available 
to assess the characteristics and outcomes of HAI in 
low and middle-income countries [1, 5, 6]. This dispar-
ity may be attributed to the complexity of diagnosing 
HAIs, which relies on multiple criteria that can vary 
between countries, a lack of research funding, and 
suboptimal surveillance systems in these countries [1, 
7, 8]. Furthermore, the differences in the burden of 
HAI between high-income and low- to middle-income 
countries may be significantly greater for critically ill 
patients with device-associated infections [1, 5].

In 2019, the hospitals members of the Program to 
Support Institutional Development of Universal Health 
System (Programa de Apoio ao Desenvolvimento 
Institucional do Sistema Único de Saúde—PROADI-
SUS), an initiative of the Brazilian Health Ministry 
to promote research, launched the IMPACTO-MR 
(Impact of Infections by Antimicrobial-Resistant 
Microorganisms in Patients Admitted to Adult Inten-
sive Care Units in Brazil: Platform of Projects to Sup-
port the National Action Plan for the Prevention 
and Control of Antimicrobial Resistance) program, 
a national intensive care unit (ICU) clinical data-
base platform [9]. This platform allows for multiple 
and comprehensive observational and interventional 
researches focused on device associated HAI in Brazil-
ian ICUs [10].

In this study, we aimed to investigate the popula-
tion attributable mortality fraction (the percentage of 
population mortality that could be prevented by theo-
retically eliminating an exposure) and the absolute 
mortality difference (excess risk of death attributable to 
an exposure) of three device associated HAI (CLABSI, 
CAUTI, and VAP) in critically ill patients from Brazil.

Methods
Study design and population
This was an observational prospective cohort study, 
nested on the IMPACTO-MR platform. Details on the 
IMPACTO-MR platform are provided elsewhere [9].

We included all adult patients admitted to the 60 par-
ticipating ICUs from September 2019, to December 

2023. Ethical approval was given by each participating 
institution’s Ethics Committee and waiver of consent 
to data collection was given to all but one participating 
site, which collected individual consent forms for all 
participating patients. This report has been prepared in 
accordance with the STROBE statement [11].

Data collection and definitions
Main data were collected in all participating ICUs using 
the Epimed Monitor System® (Epimed Solutions®, Rio 
de Janeiro, Brazil) [12] customized for the study’s objec-
tives. At each center, a data collection team was trained 
by the study’s coordinators and the Epimed Solutions® 
team. We collected data on demographics, comorbidi-
ties, admission type, admission diagnosis, Simplified 
Acute Physiology Score (SAPS) 3, invasive device usage 
(endotracheal tube, tracheostomy, urinary catheter, and 
intravascular devices), microbiology, antibiotic usage, 
infections during ICU stay, ICU and hospital length of 
stay, and ICU and hospital mortality.

Data on HAI (CLABSI, CAUTI, and VAP) were 
inserted directly in the database. In Brazil, device-asso-
ciated HAI diagnosis should follow the Brazilian Health 
Regulatory Agency (Agência Nacional de Vigilância 
Sanitária—ANVISA) definitions [8]. Investigators at all 
sites were instructed to follow ANVISA’s definitions and 
report HAI appropriately. Patients were deemed to have 
Confirmed HAI if they fulfilled all the following criteria: 
a HAI diagnosis was inserted in the database, plus cor-
responding device use within the infection window (for 
at least 48 h or device has been removed in the last day), 
plus presence of specific signs or symptoms. For CLABSI 
and CAUTI, diagnosis required a positive microbiologi-
cal culture, while VAP diagnoses included both microbio-
logically confirmed and non-microbiologically confirmed 
cases (clinical VAP).

We also considered two additional HAI definitions for 
sensitivity analysis. All patients with a HAI diagnosis in 
the database plus device use within the infection window 
(including patients with Confirmed HAI diagnosis), irre-
spective of fulfilling all ANIVSA’s criteria, were deemed 
to have Reported HAI. Patients with HAI diagnosis in 
the database plus device use within the infection win-
dow (Reported HAI) and that did not fulfill the ANVISA’s 
criteria were deemed to have Possible HAI (S1 figure). 
Therefore, the set of Reported HAI is formed by the 
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Confirmed HAI plus Possible HAI (More details on HAI 
diagnosis can be found on page 4 of the supplement).

Direct data verification was unfeasible in our study; 
however, the data management team performed several 
checks to optimize data quality. Quality reports were 
sent to each center periodically to check for inconsisten-
cies (for example: infections diagnosis without the device 
associated data). In addition, the Epimed Monitor Sys-
tem® has built-in data quality tools (plausible limit val-
ues, mandatory fields, and automatic data quality-report 
to each center). The coordinating centers were available 
through e-mail and telephone support to all participating 
sites.

Outcomes
The main outcome was hospital mortality censored at 
90 days. Secondarily, we evaluated for hospital length-of-
stay (LOS).

Statistical Analysis
Baseline and clinical characteristics on continuous vari-
ables were summarized using median and interquartile-
range (IQR) or mean and standard deviation (SD) and 
compared using t-test or Wilcoxon Rank-Sum test, as 
appropriate. Categorical variables were expressed using 
absolute numbers and percentages and compared using 
χ2 test. We did not perform imputation for missing data 
and the percentages shown in tables are valid percentages 
(not including missing data).

For estimating the population attributable hospital 
mortality fraction up to day 90 (PAF) and the absolute 
mortality difference up to day 90 (AMD), we performed 
an adjusted disability multistate model to take into 
account competing risks (hospital death and discharge) 
and the time dependency exposure to an HAI at each 
time-point, and adjusted for baseline covariates [age, 
Simplified Acute Physiology Score (SAPS) 3 and admis-
sion type] [13, 14]. This continuous-time stochastic 
process (S2 Figure) allows for estimation of population 
attributable mortality fraction as a function of the tran-
sition probabilities between states, where death and dis-
charge are absorbing states, and HAI acquisition is an 
intermediate state. The transition intensities between 
states are modeled using Cox proportional-hazard mod-
els, and then the transition probabilities are defined [13]. 
Finally, we were able to calculate the PAF and AMD. The 
PAF at a time t, given the covariates Z is given by:

PAF(t|Z) =
P(D, t,Z)− P(D|HCAI , t,Z)

P(D, t,Z)

where P(D, t,Z) represents the probability of death 
before time t given the covariates Z and P(D|HCAI , t,Z) 
represents the conditional probability of death in patients 
not exposed to HAI before time t given the covariates Z 
and that exposure to HAI did not occur before time t.

The AMD at a time t, given the covariates Z is given by:

where P(D|HCAI , t,Z) represents the conditional prob-
ability of death in patients exposed to HAI before time t 
given the covariates Z and that exposure to HAI occurred 
before time t, P(D|HCAI , t,Z) represents the condi-
tional probability of death in patients not exposed to HAI 
before time t given the covariates Z and that exposure to 
HAI did not occurred before time t. The 95% confidence 
intervals for both PAF and AMD were obtained by boot-
strap analyses. Finally, PAF can be interpreted as the frac-
tion of the population mortality that could be prevented 
by eliminating the exposure (HAI) up to time t, and 
AMD can be interpreted as a measure of the excess risk 
of death attributable to the exposure (HAI) up to time t 
for an individual patient.

Considering each specific Confirmed HAI might have 
distinct impact on the outcomes, we performed analyses 
of each HAI on the PAF and AMD. We performed the 
same analyses as sensitivity analyses for the Reported 
HAI and Possible HAI.

Exploratory analyses included a time-dependent Cox 
model with hospital survival to 90 days for the HAI expo-
sure, adjusted for age, SAPS 3, and admission type. For 
estimating the hospital LOS (change in LOS—cLOS) we 
used a multistate model adjusted for age, SAPS 3, and 
admission type. Multistate models are useful in evaluat-
ing cLOS given their ability in dealing with time-depend-
ent bias, especially in setting of HAI when subjects 
transition between states [15, 16]. We also compared the 
outcomes between the groups consisted of only Con-
firmed HAI versus patients with Possible HAI.

No adjustments for multiplicity were performed and a 
2-sided P value of less than 0.05 was considered statisti-
cally significant. All statistical analyses were performed 
using the R software (version 3.6.3; R Foundation for Sta-
tistical Computing, Vienna, Austria; https:// www.R- proje 
ct. org/) [17].

Results
Sample characteristics
We analyzed data from 128,247 adult patients admit-
ted to 60 participating units between September 2019 
and December 2023. Most centers were public (61.7%), 
with a median of 1932 admissions per ICU during the 
study period [IQR, 970–2882]. The mean patient age 

AMD(t|Z) = P(D|HCAI , t,Z)− P
(

D|HCAI , t,Z
)

https://www.R-project.org/
https://www.R-project.org/
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was 61.6 years (SD, 17.5); 67,667 were men (52.8%), and 
54.7% of admissions were from public hospitals. Most 
patients were from the Southeast region of Brazil (37.9%). 
The majority were admitted from the emergency depart-
ment (30.9%) or operating room (29.4%), with a median 
Charlson comorbidity index of 1 [IQR 0–2] and a median 
SAPS 3 score of 45 [IQR 34–57]. Data on hospital out-
comes (LOS and mortality) were available for 125,995 
patients (98.2%) (Table 1 and S1 table in supplement).

A total of 4066 patients (3.2%) were diagnosed with at 
least one Confirmed HAI during their ICU stay, with 435 
having more than one. Diagnoses included 1493 CLABSIs 
(0.89/1,000 patient-device days), 433 CAUTIs (0.45/1000 
patient-device days), and 2742 VAPs (5.04/1000 patient-
device days), of which 1126 were clinical VAP. The yearly 
HAI density/1000 patients-device/day remained stable 
during the study period, including during the COVID-
19 pandemic. The median time from device insertion to 
Confirmed HAI diagnosis was 9  days for CLABSI [IQR 
5–14], 8 days for CAUTI [IQR 5–14], and 7 days for VAP 
[IQR 4–11] (Table 1 and S3 Figure).

Of the Confirmed VAP cases, 1514 (55.2%) were early 
(≤ 7  days from device insertion) and 1228 (44.8%) were 
late (> 7  days). The most common microorganisms in 
VAP were Klebsiella spp., Acinetobacter spp., Pseu-
domonas spp., and Staphylococcus aureus (S4 Figure). 
Acinetobacter spp. was more common in late VAP, while 
Staphylococcus aureus, Enterobacter spp., and other 
Gram-positive bacteria were more prevalent in early VAP 
(S5 Figure). Klebsiella spp. was the most common identi-
fied microorganism in CLABSI and CAUTI (S4 Figure).

Population attributable mortality fraction
For Confirmed HAI, the PAF begins increasing by 
the end of the second week, stabilizing around day 60 
(Fig. 1). The PAF for Confirmed HAI was 3.89% (95% CI 
3.68–4.11%) (Table  2). VAP was the HAI with highest 
associated PAF (2.16%, 95% CI 2.05–2.33%). The PAF for 
CLABSI and CAUTI are shown in S6 Figure and Table 2.

Table S6 present the PAF by covariates, showing higher 
PAF in less severely ill patients (1st and 2nd SAPS 3 quar-
tiles), elective surgical patients, and those older than 
80 years.

Absolute mortality difference
The AMD for Confirmed HAI was 33.69% (95% CI 
32.27–35.33%), with a nearly linear increase up to day 
60, stabilizing afterward (Table  3; Fig.  2). The AMD 
for specific Confirmed HAIs was: 29.01% (95% CI 
27.15–30.98%) for VAP, 31.64% (95% CI 29.3–34.81%) 
for CLABSI, 9.94% (95% CI 3.88–15.54%) for CAUTI, 
and 35.6% (95% CI 28.93–42.99%) for ≥ 2 HAI (Table  3 

and S11 Figure). S9 Table and S16 Figure show that the 
excess risk of death is higher in less severely ill patients 
(1st and 2nd SAPS 3 quartiles), elective surgical patients, 
and those over 80 years. S12–15 Tables present AMD for 
each Confirmed HAI by covariates.

Sensitivity analyses
Data on Reported and Possible HAI are presented in S2 
and S3 Tables. The PAF for Reported HAI was 6.07% 
(95% CI 5.77–6.33%) (S4 Table). PAF for each specific 
Reported HAI is shown in S7-S8 Figures and S4 Table. 
The PAF for Possible HAI was 2.54% (95% CI 2.35–2.71%) 
(S4 Table). PAF for each specific Possible HAI is shown 
in S9-S10 Figures and S4 Table. Tables S7-S8 present the 
PAF for Reported and Possible HAI by covariates.

Both Reported and Possible HAI show similar AMD 
to Confirmed HAI: 33.13% (95% CI 31.86–34.4%) and 
33.49% (95% CI 31.08–35.48%), respectively. Results 
for specific Reported and Possible HAI are shown in S5 
Table and S12–15 Figures. S10–11 and S16–23 Tables, 
and S17–18 Figures, show AMD for Reported and Pos-
sible HAI by covariates.

Secondary outcome and exploratory analyses
Patients with Confirmed HAI had higher hospital LOS 
[mean 43.9 days (SD 36.9) vs. mean 18.1 days (SD 26.7)] 
and higher mortality [57.6% vs. 24.11%] compared to 
those without Confirmed HAI. A multistate model indi-
cated that Confirmed HAI is associated with increased 
hospital LOS [cLOS 5.01  days (95% CI 4.28–5.92), 
p < 0.001] and hospital mortality [Hazard Ratio 1.32 (95% 
CI 1.26–1.39), p < 0.001]. Similar results were observed 
using the Reported HAI definition (S24 Table and S19 
Figure).

Compared to Possible HAI, Confirmed HAI was asso-
ciated with higher hospital mortality [Hazard Ratio 1.07 
(95% CI 1.002–1.15), p = 0.045] but not with higher hos-
pital LOS [cLOS 0.28 (95% CI − 1.36 to 1.92), p = 0.74] 
(S25 Table).

Discussion
In this prospective cohort of 128,247 patients across 60 
Brazilian ICUs, ICU-acquired HAI (CLABSI, CAUTI, 
and VAP) significantly contributed to hospital mortality, 
with a PAF of 3.89% and an AMD of 33.69%.

Both PAF and AMD increased after the second week, 
stabilizing around day 60, with an initial paradoxi-
cal negativity due to early deaths among patients who 
hadn’t had time to acquire HAI. Under a more sensitive 
HAI definition (Reported HAI), the PAF was higher at 
6.07%, reflecting the greater prevalence of HAI. This 
should be interpreted as the observable proportion of 
attributable in-hospital death cases associated with 
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Table 1 Characteristics of the study population

Confirmed HAI p-value

No (N = 124,181) Yes (N = 4066) Total (N = 128,247)

Region, n (%)  < 0.001

 Southeast 47,217 (38) 1362 (33.5) 48,579 (37.9)

 South 27,991 (22.5) 1758 (43.2) 29,749 (23.2)

 Northeast 35,508 (28.6) 834 (20.5) 36,342 (28.3)

 Center-west 8291 (6.7) 55 (1.4) 8346 (6.5)

 North 5174 (4.2) 57 (1.4) 5231 (4.1)

Hospital type, n (%)  < 0,001

 Public 67,760 (54.6) 2344 (57.6) 70,104 (54.7)

 Private 56,421 (45.4) 1722 (42.4) 58,143 (45.3)

 Age, years, mean (SD) 61.7 (17.5) 59.2 (17.3) 61.6 (17.5)  < 0,001

Sex at birth, n (%)  < 0.001

 Female 58,963 (47.5) 1610 (39.6) 60,573 (47.2)

 Male 65,211 (52.5) 2456 (60.4) 67,667 (52.8)

Admission type, n (%)  < 0.001

 Emergency—clinical 73,991 (62) 3087 (76) 77,078 (62.5)

 Emergency—surgical 13,063 (10.9) 670 (16.5) 13,733 (11.1)

 Elective surgery 32,270 (27) 304 (7.5) 32,574 (26.4)

Hospital location before ICU admission, n (%)  < 0.001

 Emergency department 36,702 (30.7) 1557 (38.3) 38,259 (30.9)

 Operating room 35,588 (29.7) 776 (19.1) 36,364 (29.4)

 Other Hospital 15,802 (13.2) 632 (15.6) 16,434 (13.3)

 Hospital ward 15,608 (13) 617 (15.2) 16,225 (13.1)

 Other ICU 3804 (3.2) 208 (5.1) 4012 (3.2)

  Othera 12,140 (10.2) 271 (6.7) 16,953 (10.1)

Location before hospital admission, n (%)  < 0.001

 Home 70,915 (61.5) 1778 (44.6) 72,693 (60.9)

 Other hospital or health services 44,434 (38.5) 2210 (55.4) 46,644 (39.1)

Comorbidities and risk factors, n (%)

 Hypertension 45,072 (36.3) 1647 (40.5) 46,719 (36.4)  < 0,001

 Diabetes 22,656 (18.2) 910 (22.4) 23,566 (18.4)  < 0,001

 Alcohol abuse 4624 (3.7) 237 (5.8) 4861 (3.8)  < 0,001

 Smoking 9143 (7.4) 369 (9.1) 9512 (7.4)  < 0,001

 Locoregional solid tumor 8248 (6.6) 221 (5.4) 8469 (6.6) 0.003

 Metastatic solid tumor 2920 (2.4) 63 (1.5) 2983 (2.3) 0.001

Charlson Comorbidity Index, median [IQR] 1 [0–2] 1 [0–2] 1 [0–2]  < 0,001

Length of hospital stay prior to ICU admission, median 
[IQR]

1 [0–3] 1 [0–4] 1 [0–3]  < 0,001

SAPS 3, median [IQR] 44 [34–56] 58 [47–70] 45 [34–57]  < 0,001

Infection density/1000 patients-device/day

 CLABSI 1493/1669336 (0.89)

 CAUTI 433/953008 (0.45)

 VAP 2742/543688 (5.04)

Median time from device insertion to HAI diagnosis, days

 CLABSI 9 [5–14]

 CAUTI 8 [5–14]

 VAP 7 [4–11]

Year of ICU admission, n (%)  < 0,001

 2019 1986 (1.6) 65 (1.6) 2051 (1.6)
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the exposure (HAI) among all patients admitted to the 
ICU. Therefore, in our population, depending on HAI 
definition, between 3.89% and 6.07% of all deaths are 
attributable to HAI. The higher PAF with the more 
sensitive definition is due to additional deaths among 
newly diagnosed patients [18]. The AMD was consist-
ently elevated across all HAI definitions, resulting in a 
more than 30% excess mortality risk attributable to HAI 
for individual patients. Notably, the HAI burden was 
higher among less severely ill patients, those undergo-
ing elective surgeries, and older individuals, though 
still significant, it was relatively lower in more severely 

SD standard deviation, IQR interquartile range, SAPS 3 Simplified Acute Physiology Score 3, CLABSI central line associated bloodstream infection, CAUTI catheter 
associated urinary tract infection, VAP ventilator associated pneumonia, HAI healthcare-associated infection
a Catheterization laboratory, home, step-down unit, obstetric center, and other not specified

Table 1 (continued)

Confirmed HAI p-value

No (N = 124,181) Yes (N = 4066) Total (N = 128,247)

 2020 29,864 (24.05) 1080 (26.56) 30,944 (24.13)

 2021 23,186 (18.67) 1059 (26.05) 24,245 (18.9)

 2022 32,456 (26.14) 914 (22.48) 33,370 (26.02)

 2023 36,689 (29.54) 948 (23.32) 37,637 (29.35)

Fig. 1 Population attributable mortality fraction for confirmed HAI

Table 2 Population attributable mortality fraction

a Estimated using a disability multistate model adjusted for age, SAPS 3 and 
admission type

Population attributable mortality fraction (95% CI)a

Day 30 Day 60 Day 90

Confirmed HAI

All HAIs 2.33% (2.12–2.55%) 3.63% (3.43–3.86%) 3.89% (3.68–4.11%)

VAP 1.43% (1.27–1.63%) 2.04% (1.91–2.23%) 2.16% (2.05–2.33%)

CLABSI 0.68% (0.55–0.77%) 1.09% (0.96–1.2%) 1.2% (1.08–1.32%)

CAUTI 0.03% (− 0.02–0.08%) 0.1% (0.05–0.14%) 0.11% (0.07–0.16%)

 ≥ 2 HAIs 0.06% (− 0.03–0.11%) 0.29% (0.22–0.37%) 0.33% (0.26–0.4%)
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ill patients—a pattern consistent across all HAI defini-
tions. Both HAI definitions were also associated with 
longer ICU stays and higher mortality. Interestingly, 
when comparing mortality and hospital LOS between 
patients with Confirmed HAI and those with Possible 
HAI, there was no difference in hospital LOS, but a 
slight increase in mortality risk for Confirmed HAI.

Population attributable mortality fraction (PAF) is a 
measure used to estimate the impact of a hypothetical 
intervention that could eliminate the exposure of interest 
entirely. Importantly, it assumes exchangeability between 
exposure levels and is influenced by the prevalence of 
the exposure [19]. Therefore, it’s not surprising that VAP 
has a higher PAF than CLABSI and CAUTI, given VAP’s 
greater prevalence as an HAI. Additionally, the more 

sensitive definition of HAI yielded a higher, expected PAF, 
which carries important implications for interpreting 
these results While achieving zero events may be feasible 
for CLABSI [20]. this assumption does not hold for VAP 
or CAUTI. For example, efforts to eliminate VAP through 
financial incentives have been associated with gaming the 
definition of VAP [21] and diagnosis bias [22]. Conse-
quently, although we observed a PAF of 2.16% for VAP, it is 
likely that efforts to reduce VAP—without manipulating its 
definition—would only achieve a portion of this potential 
reduction. In contrast, efforts to reduce CLABSI to zero 
are more likely to reach their full potential, supported by 
experimental evidence. Furthermore, these interventions 
should account for the ceiling effect of standardized care 
bundles in reducing each type of HAI.

Table 3 Absolute mortality difference

a Estimated using a disability multistate model adjusted for age, SAPS 3 and admission type

Absolute mortality difference (95% CI)a

Day 30 Day 60 Day 90

Confirmed HAI

All HAIs 17.34% (15.35–19.04%) 30.4% (28.97–32.35%) 33.69% (32.27–35.33%)

VAP 16.61% (14.26–18.67%) 26.66% (24.54–28.55%) 29.01% (27.15–30.98%)

CLABSI 16.54% (13.14–19.92%) 28.24% (25.28–30.78%) 31.64% (29.3–34.81%)

CAUTI 2.47% (− 4.17–7.43%) 8.8% (2.78–15.33%) 9.94% (3.88–15.54%)

 ≥ 2 HAIs 4.11% (− 0.99–11.83%) 30.51% (24.37–37.54%) 35.6% (28.93–42.99%)

Fig. 2 Absolute mortality difference for confirmed HAI
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These results are significant because contextualizing 
the burden of device-associated HAI in low- and mid-
dle-income countries is challenging due to the lack of 
national-level data with proper methodology for calculat-
ing PAF or AMD [1, 5]. A Brazilian study on nosocomial 
sepsis reported an attributable mortality fraction of 7.6% 
[23]. A meta-analysis of randomized trials on VAP pre-
vention found an attributable mortality of 13% [24], while 
a multicenter study indicated that 60-day ICU-attributa-
ble mortality for VAP was 5.9% [25]. The median hospital 
LOS for patients with HAI in our study was comparable 
to that of the HAI subgroup in the EPIC III study [2]. 
However, our study’s results on the impact of HAI on 
hospital LOS are on the conservative end of previously 
reported estimates [1, 26], likely due to the more rigorous 
methodology we employed.

Our study provides valuable insights in a field that 
otherwise lacks data in low- and middle-income coun-
tries and may aid in the design of future trials. Given 
the challenges in diagnosing HAI, especially VAP [22, 
27], our findings should be viewed as a minimum esti-
mate of HAI’s population attributable mortality frac-
tion. Additionally, our results highlight the urgent need 
for healthcare and government stakeholders to support 
further research on the prevention and management of 
HAI, particularly in low- and middle-income countries 
[6, 28]. Together with other initiatives [29], our platform 
is expanding the understanding of outcomes for criti-
cally ill patients in Brazil and can contribute to improving 
national HAI surveillance.

Despite the effort to conduct a multicenter study in a 
middle-income country, our work has several limita-
tions. First, the diagnosis of HAI was not individually 
adjudicated by independent reviewers, which introduces 
a potential risk of exposure misclassification bias. How-
ever, the results were consistent across both HAI defini-
tions, and we employed the same reporting framework 
across all centers to obtain valid estimates, considering 
the definition used, which differs from CDC definitions, 
for example. Second, data on the microbiological resist-
ance of all HAI were not available for all isolates, limit-
ing our ability to explore the issue of multidrug resistance 
further. However, this was not the primary objective 
of this analysis. Third, although we adjusted for base-
line confounders and accounted for the competing risks 
of death and ICU discharge, we did not have data on 
time-dependent daily confounding variables necessary 
to derive a full counterfactual definition of population 
attributable mortality fraction [30], which would likely 
yield even more conservative estimates, as demonstrated 
by Bekaert et  al. for VAP [25]. Fourth, we observed no 
fluctuations in HAI density during the study period, 
including the COVID-19 pandemic, which could suggest 

underreporting of HAI during this period. Fifth, the ICUs 
were not randomly selected to participate in the platform. 
Nonetheless, our goal of achieving representativeness of 
Brazil’s geographical regions and hospital financing sys-
tems, to enhance generalizability, was accomplished. We 
believe our results are therefore generalizable to Brazil 
and other countries facing resource constraints.

Conclusion
Device-associated HAI significantly contribute to hos-
pital mortality and impose a high excess risk of death 
for individual critically ill patients in a middle-income 
country setting. These results can aid in designing much-
needed trials on the prevention and treatment of HAI, 
fostering high-quality research in low- and middle-
income countries.
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