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Abstract 

Electrical impedance tomography (EIT) is an emerging technology for the non‑invasive monitoring of regional dis‑
tribution of ventilation and perfusion, offering real‑time and continuous data that can greatly enhance our under‑
standing and management of various respiratory conditions and lung perfusion. Its application may be especially 
beneficial for critically ill mechanically ventilated patients. Despite its potential, clear evidence of clinical benefits is still 
lacking, in part due to a lack of standardization and transparent reporting, which is essential for ensuring reproduc‑
ible research and enhancing the use of EIT for personalized mechanical ventilation. This report is the result of a four‑
day expert meeting where we aimed to promote the consistent and reliable use of EIT, facilitating its integration 
into both clinical practice and research, focusing on the adult intensive care patient. We discuss the state‑of‑the‑art 
regarding EIT acquisition and processing, applications during controlled ventilation and spontaneous breathing, 
ventilation‑perfusion assessment, and novel future directions.
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Introduction
Imaging plays a crucial role in the diagnosis and moni-
toring of critically ill patients. Among others, electrical 
impedance tomography (EIT) has gained popularity as 
a safe, non-invasive and validated bedside technique for 
real-time continuous evaluation of the ventilation and 
perfusion distribution [1, 2]. Given its high temporal res-
olution, ability to show regional ventilation/perfusion and 
track changes over time, EIT may be particularly valuable 
in mechanically ventilated patients [1–5]. EIT improves 
our physiological understanding of respiratory failure at 
bedside (e.g., with hypoxemia, pulmonary derecruitment, 
or potentially patient self-inflicted lung injury—P-SILI). 
It can also monitor and assess the dynamic response to 
maneuvers (e.g. titration of positive end-expiratory pres-
sure (PEEP) [3], prone positioning [4]) and enables inves-
tigating specific pulmonary conditions over time.

Hence, EIT application may be crucial in point-of-care 
evaluation of lung physiology and delivering of individu-
alized mechanical ventilation. Despite its potential, clear 
evidence of clinical benefits is still lacking [1, 5]. This may 
be related to technical barriers and a lack of standardiza-
tion in data processing and in the interpretation of analy-
ses, which is key to allow successful clinical integration 
[6].

To evaluate the state-of-the-art of EIT monitoring and 
to stimulate standardized experimental use and thereby 
to promote a successful implementation of EIT in clinical 
practice, a four-day expert meeting was held in the spring 
of 2024 in Leiden (The Netherlands) to discuss how to 
best acquire, process, analyze and interpret EIT data, 
both in a clinical and scientific context. The expert group 
comprised professionals with different clinical and/or 
scientific expertise in EIT, including medical doctors, 
technical physicians, respiratory therapists and biomedi-
cal engineers. This paper summarizes the insights gained 
from this meeting and provides recommendations on 
five areas of interest: (1) EIT acquisition, (2) EIT signal 
and image processing, (3) applications during controlled 
ventilation, (4) applications during spontaneous breath-
ing, and (5) ventilation-perfusion assessment, focusing 
on adult patients in the intensive care unit (ICU). Novel 
future directions of EIT are also discussed.

EIT acquisition
Best practices are summarized in Fig. 1.

Electrode belt placement and EIT initiation
For in-depth technical principles of EIT, we refer to Fre-
richs et al. [2]. To date, indications and contraindications 
for EIT use are not necessarily evidence-based, but rather 
resulting from expert consensus. The first step to obtain 
a reliable measurement is the correct positioning of the 

electrode belt. The belt is typically positioned trans-
versely between the 4th and 5th intercostal space [2], 
measured in the parasternal line. Positioning of the belt 
too low could result in artifacts from diaphragm move-
ment and inaccurate values of tidal impedance variation 
(TIV) [7]. Conversely, placement of the belt too high 
may induce an erroneous estimation of ventilated areas, 
especially regarding dorsal regions [8–10]. Belt rotation 
should also be avoided, as it will affect the reconstructed 
image [11]. Belt plane orientation is also important: an 
obliquely placed belt (i.e., dorsal part of the belt placed 
more cranially than its ventral part), will result in an 
underrepresentation of the dorsal lung and, hence, 
erroneous interpretation of dorsal hypoventilation/col-
lapse. A transverse plane is suggested for standard EIT 
monitoring.

The presence of chest tubes, bandages, wounds or skin 
burns may hinder correct belt placement. EIT devices 
generally work properly in the absence of 1 or 2 electrode 
pairs (for 16 and 32 electrode belts, respectively). If the 
conventional belt position is not possible, a higher belt 
placement is recommended. In the presence of rib frac-
tures, careful selection of belt size and position is impor-
tant to avoid any excessive pressure on the chest.

Belt size can be selected according to predefined tables 
based on the half-chest perimeter (measured from ster-
num to spine) [2]. Appropriate size selection prior to 
the measurement allows optimal inter-electrode spacing 
(overlapping electrodes should be avoided) and skin con-
tact, minimizes the belt’s potential impact on chest wall 
compliance, and reduces waste with disposables. Elec-
trode-to-skin contact can be improved by applying water, 
crystalloid fluid, ultrasound gel, or device-specific con-
tact agents, according to the manufacturer. If required 
for the specific device, the reference electrode should 
be placed 15–20 cm from the belt’s plane, ideally on the 
abdomen or shoulder.

After belt positioning, EIT recordings should be started 
after device calibration (when possible), signal quality 
check, and a period of signal stability (at least 1 min rec-
ommended). Checking for stability after recordings also 
helps to ensure reliability of EIT measurements.

Synchronized recordings
Simultaneous measurement of EIT with other physi-
ological signals (i.e., respiratory waveforms, esophageal 
pressure, ECG) facilitates analyses and interpretation. 
Recording data on a single device is recommended, e.g., 
using a device-specific connection or flow/pressure sen-
sor attached to the EIT machine. Absolute synchrony 
between sources can never be guaranteed due to acqui-
sition and processing delays. However, if correspond-
ing breaths are identified in different signals/sources, 
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breath-by-breath comparison is possible. In this case, 
performing breath-hold maneuvers with different dura-
tions during the acquisition serves as a useful reference 
for (offline) synchronization.

Acquisition challenges and considerations
Several factors need careful attention for reliable EIT 
acquisition:

• Negative inspiratory impedance changes: Diaphragm 
movement, pleural effusion, pneumothorax, external 
chest compressions or coughing may induce nega-
tive TIV [8]. While some of them are generally con-

sidered artifacts (e.g., diaphragmatic movement), 
others (e.g., pleural effusion, pneumothorax) may 
have clinical value [12, 13]. Of note, the presence of 
pneumothorax, pleural effusion and subcutaneous 
emphysema may impact TIV signal quality, making 
meaningful interpretations difficult.

• End-expiratory lung impedance (EELI) stability: 
Changes in end-expiratory lung impedance (∆EELI), 
i.e., due to PEEP adjustments, are frequently used 
to track changes in end-expiratory lung volume 
(∆EELV) as both closely correlate [14–17]. How-
ever, EELI may also change because of artifacts, such 
as pulsation of inflatable mattresses, degradation of 

Fig. 1 EIT acquisition and best practices. Abbreviations: A.U., arbitrary units; EELI, end‑expiratory lung impedance; EIT, electrical impedance 
tomography; US, ultrasound
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contact agent, patient movements (active or passive, 
including bed angle), rapid changes in fluid balance, 
and belt repositioning [18–23]. ∆EELI calculations 
over long or multiple recordings should therefore be 
avoided. Furthermore, since device-specific calibra-
tions and measurements are in arbitrary units (A.U.), 
absolute EELI and ∆EELI values cannot be compared 
among different patients. Short-term within-patient 
EELI changes can be compared, when mitigating 
artifacts. For between-patient comparisons, absolute 
EELI cannot be used, even after calibration. As for 
between-patient comparisons in ∆EELI, a patient-
specific calibration (i.e., conversion from A.U. to mL 
via e.g., spirometry [24] or by recording tidal volumes 
on the ventilator [25]) has been used, but point-cali-
brations depend on the lung condition in that setting 
and therefore should be repeated if lung tissue prop-
erties change. Alternatively, the relative percentage 
change in EELI as compared to TIV can be used.

• Electrical-based interference: Active pacemakers/
ICD are generally considered a safety contraindica-
tion for EIT use, but there is no evidence that mod-
ern EIT devices could negatively influence their 
functioning. However, vice-versa, active pacemakers/
ICD can interfere with the EIT recording (creating 
artifacts in the EIT signal) unless a special artifact 
filter is enabled on the EIT device. Respiratory elec-
tromyography (e.g., for neurally-adjusted ventilator 
assist (NAVA)) is a passive measurement and there-
fore does not interfere with the EIT signal if both 
are properly positioned. In contrast, the EIT signal 
could potentially influence electromyography record-
ings. There is no data regarding interactions between 
EIT signals and respiratory muscle stimulation (e.g., 
phrenic nerve stimulation).

• Repeated measures over long time periods: Longi-
tudinal acquisition is exposed to potential errors, 
since both belt position and patient factors may dif-
fer between acquisition time-points. Marking the 
belt location with a skin marker can be a reason-
able option when repeated measures are planned, 
to ensure comparability among recordings. While 
EELI comparisons over multiple recordings should 
be avoided (see above), the evaluation of tidal ven-
tilation distribution (e.g., % of TV in ROI4) is less 
affected by longitudinal acquisition artifacts if belt 
position is preserved.

EIT signal processing
EIT signal processing generally involves: (1) filtering to 
extract a clean respiratory and/or cardiovascular sig-
nal, (2) selection of functional lung regions (i.e., lung 

segmentation), and/or (3) selection of regions of interest 
(ROI), if used. Each step alters the EIT signal differently 
and thus affects the computation and interpretation of 
parameters, warranting clear reporting.

Signal filtering
EIT acquires voltage data subsequently reconstructed 
to impedance data and visualized as two-dimensional 
images (generally 32 × 32 pixels) containing informa-
tion about lung ventilation and perfusion, heart action, 
but also disturbances/noise from (un)known sources. 
Most EIT applications require signal filtering prior to 
analysis, which can be performed at different stages: 
pre-reconstruction (filtering voltage data), directly post-
reconstruction (filtering pixel impedance data), or after 
summing pixel impedances to a global or regional tidal 
impedance signal. Filtering voltage data requires intimate 
knowledge of the EIT hardware and raw data access, 
making this option frequently impractical.

Current devices mostly use frequency filters for pro-
cessing and visualizing data on-device. The cardiovascu-
lar signal often is removed with low-pass filters, with a 
cutoff frequency between the respiratory rate and heart 
rate. However, this also removes harmonics (i.e., higher 
frequency details) of the respiratory signal of interest, 
thus introducing alterations in amplitude, EELI and tim-
ing [26].

More sophisticated filters can be considered during 
offline processing (depending on the use-case), requir-
ing export of unfiltered pixel impedance data and/or 
disabling filters on-device (Table 1). As phase differences 
between pixel-level signals might influence the resulting 
summed impedance signal, we recommend filtering pixel 
impedance data before summation.

Lung segmentation and region of interest (ROI) selection
Lung segmentation Since the EIT image comprises the 
chest portion within the belt plane (e.g., lung, chest wall, 
air outside the lungs, pleural effusion), lung segmenta-
tion aims to identify only lung tissue, thereby excluding 
non-parenchymal tissue (Additional file 1) [27]. To date, 
except from reconstruction of lung contouring based on 
patient’s anthropometric characteristics (i.e., as in the 
LuMon™ system, Sentec), extracting the total lung con-
tour (including ventilated and non-ventilated lung tis-
sue) directly from the EIT signal is impossible. Functional 
lung contouring is usually based on a TIV cut-off (typi-
cally a percentage of the maximum pixel’s TIV within the 
analyzed tidal image, e.g., 10–15%) [27, 28] which rep-
resents a reasonable choice but excludes non-functional 
lung regions (e.g., atelectasis). Elimination of the heart 
region when defining the lung contour should be care-
fully considered [29].
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ROIs A region of interest (ROI) represents a subset of 
pixels. ROI definition is fundamental to exploit regional 
analysis of lung behavior as it allows inter-regional com-
parison within the lung area (e.g., ventral vs. dorsal), for 
instance to assess the effects of PEEP or positional strate-
gies in term of ventilation re-distribution [30, 31]. ROIs 
can characterize the spatial ventilation heterogeneity 
using horizontal layers, vertical layers or quadrants. ROI 
analysis can be implemented to different images, there-
fore leading to different results:

• Whole EIT image ROIs: The whole EIT image is con-
sidered (ventilated + non-ventilated area); this allows 
the inclusion of hypo-ventilated areas, increasing the 
discriminatory power of ventilation inhomogeneity 
[27]. ROIs are defined based on the division of the 
pixel matrix, often in equidimensional regions (e.g., 
quadrants, or 4 regions of each 8 pixel rows). How-
ever, it is not uncommon for the most dependent 
ROI to exhibit little or no TIV, since the exact posi-
tion of the lungs is affected by the patient’s anatomy, 
device-specific image reconstruction models and belt 
positioning. This could make the interpretation of the 
dependent regions difficult.

• Functional EIT image ROIs: Only the segmented 
lung area is considered (functional lung contour), 
which can ease the comparison between dependent 
and non-dependent lung regions. Geometrical ROIs 
(layers/quadrants) can be applied to this functional 
lung region. However, the definition is purely func-
tional, and the so-defined dorsal region may be dif-
ferent from the dorsal region defined with e.g., CT 
scan. Recently, a new method for ROI selection was 
described, where on average, each ROI represents an 
equal contribution to the TIV of the full EIT record-
ing of interest [19, 32]. This physiological approach is 
consistent with using the center of ventilation to sep-
arate the ventral and dorsal lung but includes multi-
ple layers [32].

Clinical applications: controlled ventilation
Several indices were developed to describe the global, 
spatial and temporal ventilation distribution, based 
on the pixel and/or regional variations of impedance 
(Table 2). When used in conjunction with specific venti-
lator procedures, EIT provides regional information that 
may be missed by global respiratory mechanics monitor-
ing alone.

EIT to titrate positive end‑expiratory pressure (PEEP)
The overdistension and lung collapse (OD-CL) method 
[3] has been most used in clinical studies [33–39] to 

assess the impact of PEEP on regional ventilation dis-
tribution and titrate PEEP. It involves assessing regional 
compliance changes, commonly during a decremental 
PEEP trial: compliance loss towards higher PEEP is inter-
preted as overdistension (OD), whereas compliance loss 
towards lower PEEP represents collapsed lung (CL). The 
optimal PEEP is then usually considered the one found at 
the intersection of the collapse and overdistension curves 
[3]: the PEEP that jointly minimizes both phenomena. 
This also assumes that collapse and overdistension con-
tribute equally to ventilator-induced lung injury (VILI), 
but in some conditions this may not be true [40]. Nev-
ertheless, a recent meta-analysis demonstrated that this 
strategy for individualizing PEEP improves respiratory 
mechanics and potentially outcomes in ARDS [36].

The OD-CL method requires driving pressure meas-
urement to estimate regional compliance and should 
therefore be performed in volume-controlled ventilation 
(with inspiratory pause > 0.5  s and no intrinsic PEEP), 
when driving pressure can be automatically collected 
by the EIT machine or is added by the operator in post-
processing. Otherwise, pressure-controlled mode, with 
constant support level and with sufficient time for equi-
libration between alveolar and airway pressures at end-
inspiration and end-expiration (no-flow state), should be 
used.

Importantly, since relative regional compliance changes 
are computed and thus relative collapse and overdisten-
sion (i.e., highest PEEP = 0% collapse, lowest PEEP = 0% 
overdistension), the chosen PEEP range affects results 
[41]. Any remaining collapse at the highest PEEP level 
(as per CT scan) is not visible on EIT. Hence, the opti-
mal PEEP reflects the PEEP able to jointly minimize 
relative collapse and overdistension only in the explored 
PEEP range. To improve reliability and inter-patient com-
parisons, a standardized PEEP window (e.g., from 24 to 
6  cm   H2O, as previously done [35]) is preferable, espe-
cially for clinical trials. If a narrower range is applied, 
especially in non-ARDS or poorly recruitable lungs, a 
crossing point close to the boundaries (e.g., < 3 cm   H2O 
away from the highest or lowest PEEP step) may be an 
incentive to consider a wider PEEP range. We also recom-
mend that for intra-patient comparisons, the PEEP range 
and steps are kept constant if the PEEP trial is repeated 
over time. Nevertheless, in each clinical setting, physi-
cians should choose the acceptable PEEP range according 
to the condition of the patients, being aware of the pos-
sible issues associated with smaller PEEP windows. We 
summarize the OD-CL method with step-by-step recom-
mendations in Fig. 2. Other EIT-based methods for indi-
vidualized PEEP setting different from the decremental 
PEEP trial have also been explored [42], such as evaluat-
ing changes in EELI with PEEP.
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Evaluating the impact of specific procedures/interventions 
and position
Real-time EIT monitoring can help in the detection of 
selective bronchial intubation [43, 44], can show dere-
cruitment induced by endotracheal suctioning [45] or 
broncho-alveolar lavage [46] and may help targeting 
broncho-alveolar lavage areas [47, 48]. In addition, EIT 
can be useful to predict the effect of patient positioning. 

For example, the effect of prone position estimated by 
EIT could predict the forthcoming gas exchange response 
[49], while TIV and EELI variations could inform about 
the effects of both prone and lateral positioning [49–52]. 
EIT could also guide PEEP settings during prone posi-
tioning [53, 54], but the impact on patients’ outcomes 
remains to be evaluated. Clinicians must be aware that 
patient mobilization could also lead to changes in TIV 

Table 2 EIT parameters and their applications in different ventilation conditions, for clinical and/or scientific purposes (as per current 
evidence) as well as bedside availability has been noted

 + , the expert panel recommend the use of this parameter in this condition; + / − , the expert panel cannot state any recommendation in this condition; − , the expert 
panel does not recommend the use of this parameter in this condition

Abbreviations: NA, not applicable; CoV, center of ventilation; EELI, end-expiratory lung impedance; CL, lung collapse; OD, overdistension; PV-curve, pressure–volume 
curve; R/I ratio, recruitment-to-inflation ratio; RVD(i), regional ventilation delay (index); SB, spontaneous breathing; VT, tidal volume; V̇/Q , ventilation-perfusion

Ventilatory mode Purpose Availability Comments

Controlled Assisted Non‑intubated Clinical Research Bedside Offline

VT distribution  +  +  +  +  +  +  + 

EELI distribution  +  +  +  + / −  +  +  + EELI dependent

Dorsal fraction of ventilation  +  +  +  +  +  +  + 

CoV  +  +  +  +  +  +  + 

Global Inhomogeneity  + / −  + / −  + / −  + / −  + / −  −  + 

OD‑CL  +  + / −  + / −  +  +  +  + Needs standardization

Regional PV‑curve  +  −  −  + / −  +  + / −  + Low‑flow insufflation

RVD, RVDi  +  −  −  + / −  +  +  + Low‑flow insufflation

Silent spaces  +  +  + / −  +  +  +  + 

Time constant  +  + / −  + / −  −  +  −  + 

EIT‑based R/I ratio  +  + / −  + / −  + / −  +  +  + EELI dependent

V̇/Q matching  +  + / −  + / −  + / −  +  + / −  + Needs saline bolus

Volume estimation in SB NA NA  +  −  +  + / −  + 

Pendelluft detection  +  +  +  + / −  +  + / −  + 

Fig. 2 EIT‑based PEEP titration: step‑by‑step recommendations. The PEEP selection is generally made at the crossing point of the OD and CL curves; 
if the crossing point is between two PEEP levels, values are usually rounded up to the nearest integer. Abbreviations: ARDS, acute respiratory distress 
syndrome; DP, driving pressure; EELI, end‑expiratory lung impedance; EIT, electrical impedance tomography; HR, heart rate; CL, lung collapse; 
MAP, mean arterial pressure; OD, overdistension, PEEP, positive end‑expiratory pressure; PCV, pressure‑controlled ventilation; Tplat, time (duration) 
of plateau pressure; VCV, volume‑controlled ventilation
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and EELI, which should not be interpreted as changes in 
aeration/ventilation solely.

Evaluate VILI determinants
The reconstruction of global and regional pressure-
impedance curves and of the corresponding regional 
inflection points may inform about regional overdisten-
sion or collapse [55–57]. For instance, regional intra-tidal 
recruitment, reflecting regional overdistension [58], has 
been quantified by the regional ventilation delay (RVD) 
index [59] or concavity indices [60]. EIT-based regional 
lung opening and closing pressures [61] may be particu-
larly useful in patients with asymmetric lung injury [62]. 
Currently, bedside availability of these parameters and 
evidence for their routine use is limited, but may help 
to dynamically titrate tidal volume based on its regional 
effects [63]. Clinicians can combine PEEP titration results 
with tidal volume guidance from EIT for improving lung 
protection [64], also in addition to other techniques, such 
as extracorporeal life support  (ECCO2R or ECMO).

Clinical applications: spontaneous breathing
EIT may offer valuable insights to safely manage spon-
taneous breathing in patients with acute hypoxemic res-
piratory failure who are at risk of P-SILI [65] and guide 
both weaning/extubation and post-extubation phases. 
In addition, EIT revealed expiratory muscle recruitment 
in ARDS patients, evidenced by an increase in EELI 
after paralysis [66]. EIT has been used for monitoring 
the effect of different non-invasive respiratory support 
modalities (i.e., interfaces, modes, settings) and interven-
tions (e.g., changes in body position) on the ventilation 
distribution and regional mechanics [4, 67, 68]. However, 
measurements of both respiratory mechanics and EIT 
are challenging in awake patients [2], due to the large 
variability in breathing patterns and various movement 
artifacts. Therefore, only a subset of EIT parameters can 
be used in this setting (Table 2). To enhance reliability, we 
suggest careful selection of stable breathing phases and 
(manual) removal of artifacts if present.

Monitoring tidal volume and respiratory rate
EIT offers a valuable non-invasive estimate of tidal vol-
ume as impedance changes strongly correlate with lung 
volume changes [16, 69–71]. However, computation 
of absolute tidal volumes with EIT is more complex, 
requiring a factor to convert tidal volume to TIV (i.e., 
k = VT/TIV). This factor can be obtained reliably during 
invasive ventilation, but needs a point calibration with 
known tidal volumes in non-intubated patients (e.g., via 
spirometry [24], or simpler calibration bag method [71]), 
which is often not practical/feasible and guarantees only 
short-term stability (i.e., only within one recording). 

Nevertheless, regional TIV distribution assessment is 
feasible without point calibration and provides poten-
tially useful insights on regional strain.

EIT also allows accurate monitoring of respiratory rate 
during spontaneous breathing [72]. This facilitates EIT-
based estimations of changes in minute volume, when 
combined with TIV [22].

PEEP titration
Compared to controlled ventilation, PEEP titration in 
assisted ventilation presents additional challenges due to 
the variability of respiratory effort, inaccurate measure-
ments of respiratory compliance [73] and hemodynamic 
fluctuations [74]. Recently, the regional peak inspiratory 
flow at different PEEP steps was suggested as param-
eter to quantify regional mechanics during spontaneous 
breathing [75], and EIT and dynamic transpulmonary 
pressure were integrated to identify the PEEP that jointly 
minimizes lung collapse and overdistension during pres-
sure support ventilation [76]. However, limitations and 
technical challenges remain, related to EIT signal stabil-
ity, time-consuming offline analysis, need for esopha-
geal manometry and uncertain accuracy in patients with 
increased airway resistance.

Weaning
When applied during the spontaneous breathing trial, 
monitoring regional TIV, de-recruitment and regional 
inhomogeneities may inform about weaning success [77, 
78]. For instance, a reduction in EELI [79–81], higher 
global inhomogeneity index [22] and pendelluft [82, 83] 
have been associated with spontaneous breathing trial 
and/or extubation failure. The predictive role of these 
parameters to guide weaning remains to be assessed.

Patient‑ventilator interaction
Utilizing the temporal and spatial ventilation distribution 
information, EIT enables patient-ventilator interaction 
monitoring and dyssynchronies diagnosis [84]. When 
combined with flow and/or airway pressure signals, the 
regional impact of dyssynchronies can be quantified [85, 
86], e.g., in terms of ventilation distribution and regional 
overdistension.

Pendelluft
Pendelluft, is ‘the volume of gas passing back and forth 
between two pathways’ [87] and the consequence of 
inhomogeneities in regional resistances and/or compli-
ances. EIT revealed the occurrence of pendelluft [88] 
which was correlated with regional inflammation; both 
could be modulated by PEEP [88]. Negative associations 
with outcome have been reported [83, 89] but the causal 
clinical impact remains to be investigated.
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EIT is the only technique capable of identifying pen-
delluft in real-time. Pendelluft measurements during 
spontaneous breathing have been used to: (1) describe 
how different ventilatory settings may affect regional 
time constants, regional resistances and compliances 
[90], (2) describe the air movement between dependent 
and non-dependent lung regions during inspiration  [85, 
91–93], and (3) compute the difference between global 
and regional redistribution of gas during the respiratory 
cycles [4, 68, 94]. Various EIT-based definitions/compu-
tations have been proposed in different scenarios (Addi-
tional file 2).

Ventilation‑perfusion matching
EIT is a promising monitor for regional ventilation-to-
perfusion ( V̇/Q ) distribution: the ratio of regional alve-
olar ventilation (ml air/min) to regional blood flow (ml 
blood/min). EIT-based V̇/Q can be performed easily at 
the bedside and repeated over time, providing important 
advantages as compared to other imaging techniques (i.e., 
CT, SPECT) or to Multiple Inert Gas Elimination Tech-
nique (MIGET), which provide only aggregate results of 
V̇/Q mismatch. In patients with respiratory failure, EIT 

V̇/Q assessment can improve our understanding of gas 
exchange abnormalities, and allows to evaluate the effects 
of procedures or ventilator settings on regional V̇/Q 
(e.g., PEEP adjustment [95], prone positioning [96] and 
adjunctive therapies, like nitric oxide [97, 98]). Whereas 
ventilation-related EIT signals are large and reasonably 
well understood, the V̇/Q technique is still relatively new 
in the clinical context and only a preliminary consensus 
on its use is possible at this time.

Perfusion has been measured via (1) conductivity-con-
trasting bolus injection (Bolus technique, Fig. 3), and (2) 
through filtering of the pulsatile heart-beat component of 
EIT signals (Pulsatility technique). The bolus technique 
showed better agreement with both SPECT [99] and PET 
[100] and is currently the reference for EIT-based V̇/Q 
assessment.

Bolus technique: procedure
Using a central line catheter, a contrast agent, usually 
10 mL of hypertonic saline (usually 5–10% NaCl) [100] is 
injected rapidly (in 1–2 s) during a breath-hold of 8–15 s 
[101]. EIT images of Q are then calculated by subtrac-
tion of the heart pixels [99], whereas the V̇ component is 

Fig. 3 Illustration of ventilation‑perfusion assessment by EIT. Waveforms and images from ref. [124] in a patient after pulmonary endarterectomy. 
A EIT waveforms before and during a NaCl bolus and apnea (38–50 s) in four lung quadrants. B Tidal ventilation image prior to the NaCl bolus 
and apnea. C Bolus‑based perfusion image. The red/yellow indicate the conductivity change during the lung perfusion phase (at approximately 
47 s) of the bolus. This is only in the left lung due to the patient’s perfusion defect. D Heart rate‑filtered EIT image. E Relative EIT‑V̇/Q image 
in the lung region of interest. The color scales used are shown using a log‑scale such that 1 indicates mean equal perfusion and ventilation 
distribution. No consensus for EIT perfusion or V̇/Q color scales is available. Abbreviations: RV = right ventral, LV = left ventral, RD = right dorsal, 
LD = left dorsal
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calculated by filtering the pre-apnea ventilation signal to 
remove heart rate-related components [26] and pixel-by-
pixel V̇/Q matching can be determined [102]. Software 
to automatically process these EIT data to calculate V̇/Q 
images at the bedside is required. If independent meas-
ures of minute ventilation and cardiac output are availa-
ble, a calibrated V̇/Q image can be calculated [103]; else, 
the EIT-V̇/Q image is unitless (the relative V̇/Q image).

Considerations and open questions
A concern may arise regarding the electrolytes load of the 
saline bolus. Nevertheless, the salt load of the injected 
bolus is relatively small (10  mL 5% saline bolus corre-
sponds to 0.5 g (8.5 mEq) of NaCl), and no adverse effects 
of electrolyte disturbances after rapid or repeated bolus 
administration have been reported to date. However, it is 
unclear how the 10  mL requirement scales with patient 
mass, blood volume and cardiac output. Several prom-
ising new contrast agents were proposed [104] and are 
currently under investigation [105]. Recent data dem-
onstrated the feasibility of calculating EIT-derived V̇/Q 
without apnea, providing new perspectives on its appli-
cation when breath-holds are difficult, e.g., during spon-
taneous breathing [106].

Standardized EIT reporting in clinical 
and experimental studies
Considering the impact of the different variables during 
EIT acquisition, processing and interpretation, we believe 
that a minimum requirement for EIT reporting would 
allow traceability, reproducibility and comparability of 
EIT studies. We therefore propose minimum standards 
for scientific reporting of EIT in clinical and experi-
mental studies (see Additional file 3). This could provide 
guidance to researchers and facilitate sustainable imple-
mentation of EIT for individualization of ventilation 
management and stimulate development of standardized 
open-source analyses pipelines (e.g., ALIVE [107]).

Future directions
In the last two decades, EIT application has consider-
ably increased, both for technological advances and for 
a better understanding of respiratory physiology in dif-
ferent settings and under different conditions. Here, we 
highlight novel future directions that have not yet been 
discussed above.

Diagnosing non‑ventilated areas
EIT can evaluate regional ventilation, but no specific 
information can be obtained from the absence of ventila-
tion, either determined by physiological (e.g., the ribcage, 
mediastinum) or pathological (e.g., pleural effusion, over-
distension, pneumothorax) entities. Hypo-ventilated 

lung areas can be identified (i.e., silent spaces [108]) but 
lung contouring is not available on all devices and may 
require individual adjustments [109]. One open question 
is therefore how to further characterize non-ventilated 
areas and how to differentiate tissue properties with 
EIT. Absolute EIT (aEIT), often used in the 1980s and 
1990s, evaluates the regional absolute impedance val-
ues and not, as the dynamic EIT (dEIT), its changes over 
time [110]. By allowing measuring different tissues con-
ductivities, aEIT could potentially distinguish between 
structures, therefore improving the understanding of 
hypo-ventilated areas.

Devices for simultaneous multi-frequency measure-
ments have already been reported [111–115] but most 
of the current clinical/commercial EIT devices are based 
on a single frequency and imaging algorithms for multi-
frequency EIT are still under-developed [116, 117]. The 
reliable detection of atelectasis and its differentiation 
from pleural effusion, pneumothorax and overdisten-
sion according to its spectroscopic properties could be a 
promising future application of multi-frequency EIT.

3D‑EIT
EIT monitoring of a single horizontal thoracic slice with 
a spatial resolution of about 2–3  cm is reasonable for 
many clinical applications. However, best spatial resolu-
tion is limited to the regions located closer to the belt. 
Movement of the lung and cardiac structures within the 
electrode plane, e.g., during a PEEP trial, can cause arti-
facts that can be misinterpreted as recruitment or over-
distension. A potential solution is to create EIT images 
in 3D [118, 119], by placing two belts for simultaneous 
recording and analyzing them with 3D reconstruction 
algorithms [120, 121]. 3D-EIT could also improve image 
quality by correcting for out-of-plane changes in imped-
ance and has the potential of enhancing the reliability of 
EIT-based V̇/Q assessment, since lung perfusion is ana-
tomically clearer than in 2D [121]. We encourage further 
research on 3D-EIT and the development of devices for 
clinical applications.

Machine learning applications
In the year 2024 it would be an omission not to mention 
machine learning in a section on future perspectives of 
any technology, and EIT makes no exception. Yet only 
few applications have been published, including deep 
learning models for image reconstruction [122] and fea-
ture extraction for predicting spirometry data and cir-
culatory parameters [123]. We see potential for machine 
learning to be valuable at multiple stages. For instance: 
image reconstruction (also for 3D-EIT), lung contour 
detection, signal filtering, artifact detection and even-
tually correction, and facilitating in complex analyses. 
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Ideally, such applications should use raw voltage data 
instead of reconstructed impedance signals since these 
are already highly processed on-device to serve the 
human eye at the bedside.

Conclusion
EIT is a powerful technology for the non-invasive moni-
toring of regional distribution of ventilation and perfu-
sion, offering real-time and continuous data that can 
greatly enhance our understanding and management 
of various respiratory and circulatory conditions. Its 
application may be especially beneficial for critically ill 
mechanically ventilated patients, providing insights that 
can guide the optimization of ventilatory support, assess 
the effectiveness of therapeutic interventions, and poten-
tially improve outcomes. Through continued innovation, 
rigorous validation, and collaborative efforts to standard-
ize practices, EIT can become an indispensable tool in 
the clinician’s arsenal, ultimately improving patient care 
and outcomes in critical care.
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