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Abstract

Electrical impedance tomography (EIT) is an emerging technology for the non-invasive monitoring of regional dis-
tribution of ventilation and perfusion, offering real-time and continuous data that can greatly enhance our under-
standing and management of various respiratory conditions and lung perfusion. Its application may be especially
beneficial for critically ill mechanically ventilated patients. Despite its potential, clear evidence of clinical benefits is still
lacking, in part due to a lack of standardization and transparent reporting, which is essential for ensuring reproduc-
ible research and enhancing the use of EIT for personalized mechanical ventilation. This report is the result of a four-
day expert meeting where we aimed to promote the consistent and reliable use of EIT, facilitating its integration

into both clinical practice and research, focusing on the adult intensive care patient. We discuss the state-of-the-art
regarding EIT acquisition and processing, applications during controlled ventilation and spontaneous breathing,
ventilation-perfusion assessment, and novel future directions.
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Introduction

Imaging plays a crucial role in the diagnosis and moni-
toring of critically ill patients. Among others, electrical
impedance tomography (EIT) has gained popularity as
a safe, non-invasive and validated bedside technique for
real-time continuous evaluation of the ventilation and
perfusion distribution [1, 2]. Given its high temporal res-
olution, ability to show regional ventilation/perfusion and
track changes over time, EIT may be particularly valuable
in mechanically ventilated patients [1-5]. EIT improves
our physiological understanding of respiratory failure at
bedside (e.g., with hypoxemia, pulmonary derecruitment,
or potentially patient self-inflicted lung injury—P-SILI).
It can also monitor and assess the dynamic response to
maneuvers (e.g. titration of positive end-expiratory pres-
sure (PEEP) [3], prone positioning [4]) and enables inves-
tigating specific pulmonary conditions over time.

Hence, EIT application may be crucial in point-of-care
evaluation of lung physiology and delivering of individu-
alized mechanical ventilation. Despite its potential, clear
evidence of clinical benefits is still lacking [1, 5]. This may
be related to technical barriers and a lack of standardiza-
tion in data processing and in the interpretation of analy-
ses, which is key to allow successful clinical integration
[6].

To evaluate the state-of-the-art of EIT monitoring and
to stimulate standardized experimental use and thereby
to promote a successful implementation of EIT in clinical
practice, a four-day expert meeting was held in the spring
of 2024 in Leiden (The Netherlands) to discuss how to
best acquire, process, analyze and interpret EIT data,
both in a clinical and scientific context. The expert group
comprised professionals with different clinical and/or
scientific expertise in EIT, including medical doctors,
technical physicians, respiratory therapists and biomedi-
cal engineers. This paper summarizes the insights gained
from this meeting and provides recommendations on
five areas of interest: (1) EIT acquisition, (2) EIT signal
and image processing, (3) applications during controlled
ventilation, (4) applications during spontaneous breath-
ing, and (5) ventilation-perfusion assessment, focusing
on adult patients in the intensive care unit (ICU). Novel
future directions of EIT are also discussed.

EIT acquisition
Best practices are summarized in Fig. 1.

Electrode belt placement and EIT initiation

For in-depth technical principles of EIT, we refer to Fre-
richs et al. [2]. To date, indications and contraindications
for EIT use are not necessarily evidence-based, but rather
resulting from expert consensus. The first step to obtain
a reliable measurement is the correct positioning of the
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electrode belt. The belt is typically positioned trans-
versely between the 4th and 5th intercostal space [2],
measured in the parasternal line. Positioning of the belt
too low could result in artifacts from diaphragm move-
ment and inaccurate values of tidal impedance variation
(TIV) [7]. Conversely, placement of the belt too high
may induce an erroneous estimation of ventilated areas,
especially regarding dorsal regions [8—10]. Belt rotation
should also be avoided, as it will affect the reconstructed
image [11]. Belt plane orientation is also important: an
obliquely placed belt (i.e., dorsal part of the belt placed
more cranially than its ventral part), will result in an
underrepresentation of the dorsal lung and, hence,
erroneous interpretation of dorsal hypoventilation/col-
lapse. A transverse plane is suggested for standard EIT
monitoring.

The presence of chest tubes, bandages, wounds or skin
burns may hinder correct belt placement. EIT devices
generally work properly in the absence of 1 or 2 electrode
pairs (for 16 and 32 electrode belts, respectively). If the
conventional belt position is not possible, a higher belt
placement is recommended. In the presence of rib frac-
tures, careful selection of belt size and position is impor-
tant to avoid any excessive pressure on the chest.

Belt size can be selected according to predefined tables
based on the half-chest perimeter (measured from ster-
num to spine) [2]. Appropriate size selection prior to
the measurement allows optimal inter-electrode spacing
(overlapping electrodes should be avoided) and skin con-
tact, minimizes the belt’s potential impact on chest wall
compliance, and reduces waste with disposables. Elec-
trode-to-skin contact can be improved by applying water,
crystalloid fluid, ultrasound gel, or device-specific con-
tact agents, according to the manufacturer. If required
for the specific device, the reference electrode should
be placed 15-20 cm from the belt’s plane, ideally on the
abdomen or shoulder.

After belt positioning, EIT recordings should be started
after device calibration (when possible), signal quality
check, and a period of signal stability (at least 1 min rec-
ommended). Checking for stability after recordings also
helps to ensure reliability of EIT measurements.

Synchronized recordings

Simultaneous measurement of EIT with other physi-
ological signals (i.e., respiratory waveforms, esophageal
pressure, ECG) facilitates analyses and interpretation.
Recording data on a single device is recommended, e.g.,
using a device-specific connection or flow/pressure sen-
sor attached to the EIT machine. Absolute synchrony
between sources can never be guaranteed due to acqui-
sition and processing delays. However, if correspond-
ing breaths are identified in different signals/sources,
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BELT POSITIONING

- Beltin 4-5™ intercostal space, transverse plane

- Prior size selection (i.e., vendor tables)

- Placement over intact skin

- Ensure good electrode-skin contact (i.e., water/US gel)
® - Mark belt position for repeated measurements

{1
n Avoid rapid fluid changes
=

No thoracic US o
simultaneously I OO
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— Simultaneous recording recommended
(connected to EIT device)

i ) ﬂ l
BED FACTORS

- No pulsating mattress
- Keep bed/body position similar

Reference electrode on shoulder or
abdomen (15-20 cm away from belt)

EIT INITIATION

- Start recordings after 1) calibration, 2) signal
quality check and 3) 1-min signal stability

- AEELI comparisons (in A.U.) over long or
multiple recordings are highly uncertain

CAUTIONS/CONSIDERATIONS (expert consensus)

- Turn off active electrical devices (if possible); passive electrical devices do not interfere with the EIT signal

- Pneumothorax or subcutaneous emphysema impact data quality, warranting caution with interpretation

- With rib fractures, ensure belt size is appropriate to avoid excessive pressure

- There are no known contraindications for EIT examination during pregnancy

- Avoid electricity-conductive fluids (sweat, saline) as they impact electrode-skin contact and thus EELI

- If other belt position is needed (e.g., chest tubes, bandages) use a higher position to avoid diaphragm artifacts

Fig. 1 EIT acquisition and best practices. Abbreviations: A.U, arbitrary units; EELI, end-expiratory lung impedance; EIT, electrical impedance

tomography; US, ultrasound

breath-by-breath comparison is possible. In this case,
performing breath-hold maneuvers with different dura-
tions during the acquisition serves as a useful reference
for (offline) synchronization.

Acquisition challenges and considerations
Several factors need careful attention for reliable EIT
acquisition:

+ Negative inspiratory impedance changes: Diaphragm
movement, pleural effusion, pneumothorax, external
chest compressions or coughing may induce nega-
tive TIV [8]. While some of them are generally con-

sidered artifacts (e.g., diaphragmatic movement),
others (e.g., pleural effusion, pneumothorax) may
have clinical value [12, 13]. Of note, the presence of
pneumothorax, pleural effusion and subcutaneous
emphysema may impact TIV signal quality, making
meaningful interpretations difficult.

End-expiratory lung impedance (EELI) stability:
Changes in end-expiratory lung impedance (AEELI),
i.e., due to PEEP adjustments, are frequently used
to track changes in end-expiratory lung volume
(AEELV) as both closely correlate [14—17]. How-
ever, EELI may also change because of artifacts, such
as pulsation of inflatable mattresses, degradation of
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contact agent, patient movements (active or passive,
including bed angle), rapid changes in fluid balance,
and belt repositioning [18-23]. AEELI calculations
over long or multiple recordings should therefore be
avoided. Furthermore, since device-specific calibra-
tions and measurements are in arbitrary units (A.U.),
absolute EELI and AEELI values cannot be compared
among different patients. Short-term within-patient
EELI changes can be compared, when mitigating
artifacts. For between-patient comparisons, absolute
EELI cannot be used, even after calibration. As for
between-patient comparisons in AEELI, a patient-
specific calibration (i.e., conversion from A.U. to mL
via e.g., spirometry [24] or by recording tidal volumes
on the ventilator [25]) has been used, but point-cali-
brations depend on the lung condition in that setting
and therefore should be repeated if lung tissue prop-
erties change. Alternatively, the relative percentage
change in EELI as compared to TIV can be used.

+ Electrical-based interference: Active pacemakers/
ICD are generally considered a safety contraindica-
tion for EIT use, but there is no evidence that mod-
ern EIT devices could negatively influence their
functioning. However, vice-versa, active pacemakers/
ICD can interfere with the EIT recording (creating
artifacts in the EIT signal) unless a special artifact
filter is enabled on the EIT device. Respiratory elec-
tromyography (e.g., for neurally-adjusted ventilator
assist (NAVA)) is a passive measurement and there-
fore does not interfere with the EIT signal if both
are properly positioned. In contrast, the EIT signal
could potentially influence electromyography record-
ings. There is no data regarding interactions between
EIT signals and respiratory muscle stimulation (e.g.,
phrenic nerve stimulation).

+ Repeated measures over long time periods: Longi-
tudinal acquisition is exposed to potential errors,
since both belt position and patient factors may dif-
fer between acquisition time-points. Marking the
belt location with a skin marker can be a reason-
able option when repeated measures are planned,
to ensure comparability among recordings. While
EELI comparisons over multiple recordings should
be avoided (see above), the evaluation of tidal ven-
tilation distribution (e.g., % of TV in ROI4) is less
affected by longitudinal acquisition artifacts if belt
position is preserved.

EIT signal processing

EIT signal processing generally involves: (1) filtering to
extract a clean respiratory and/or cardiovascular sig-
nal, (2) selection of functional lung regions (i.e., lung
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segmentation), and/or (3) selection of regions of interest
(ROI), if used. Each step alters the EIT signal differently
and thus affects the computation and interpretation of
parameters, warranting clear reporting.

Signal filtering

EIT acquires voltage data subsequently reconstructed
to impedance data and visualized as two-dimensional
images (generally 32x32 pixels) containing informa-
tion about lung ventilation and perfusion, heart action,
but also disturbances/noise from (un)known sources.
Most EIT applications require signal filtering prior to
analysis, which can be performed at different stages:
pre-reconstruction (filtering voltage data), directly post-
reconstruction (filtering pixel impedance data), or after
summing pixel impedances to a global or regional tidal
impedance signal. Filtering voltage data requires intimate
knowledge of the EIT hardware and raw data access,
making this option frequently impractical.

Current devices mostly use frequency filters for pro-
cessing and visualizing data on-device. The cardiovascu-
lar signal often is removed with low-pass filters, with a
cutoff frequency between the respiratory rate and heart
rate. However, this also removes harmonics (i.e., higher
frequency details) of the respiratory signal of interest,
thus introducing alterations in amplitude, EELI and tim-
ing [26].

More sophisticated filters can be considered during
offline processing (depending on the use-case), requir-
ing export of unfiltered pixel impedance data and/or
disabling filters on-device (Table 1). As phase differences
between pixel-level signals might influence the resulting
summed impedance signal, we recommend filtering pixel
impedance data before summation.

Lung segmentation and region of interest (ROI) selection
Lung segmentation Since the EIT image comprises the
chest portion within the belt plane (e.g., lung, chest wall,
air outside the lungs, pleural effusion), lung segmenta-
tion aims to identify only lung tissue, thereby excluding
non-parenchymal tissue (Additional file 1) [27]. To date,
except from reconstruction of lung contouring based on
patient’s anthropometric characteristics (i.e., as in the
LuMon™ system, Sentec), extracting the total lung con-
tour (including ventilated and non-ventilated lung tis-
sue) directly from the EIT signal is impossible. Functional
lung contouring is usually based on a TIV cut-off (typi-
cally a percentage of the maximum pixel’s TIV within the
analyzed tidal image, e.g., 10-15%) [27, 28] which rep-
resents a reasonable choice but excludes non-functional
lung regions (e.g., atelectasis). Elimination of the heart
region when defining the lung contour should be care-
fully considered [29].
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ROIs A region of interest (ROI) represents a subset of
pixels. ROI definition is fundamental to exploit regional
analysis of lung behavior as it allows inter-regional com-
parison within the lung area (e.g., ventral vs. dorsal), for
instance to assess the effects of PEEP or positional strate-
gies in term of ventilation re-distribution [30, 31]. ROIs
can characterize the spatial ventilation heterogeneity
using horizontal layers, vertical layers or quadrants. ROI
analysis can be implemented to different images, there-
fore leading to different results:

+ Whole EIT image ROIs: The whole EIT image is con-
sidered (ventilated + non-ventilated area); this allows
the inclusion of hypo-ventilated areas, increasing the
discriminatory power of ventilation inhomogeneity
[27]. ROIs are defined based on the division of the
pixel matrix, often in equidimensional regions (e.g.,
quadrants, or 4 regions of each 8 pixel rows). How-
ever, it is not uncommon for the most dependent
ROI to exhibit little or no TIV, since the exact posi-
tion of the lungs is affected by the patient’s anatomy,
device-specific image reconstruction models and belt
positioning. This could make the interpretation of the
dependent regions difficult.

« Functional EIT image ROIs: Only the segmented
lung area is considered (functional lung contour),
which can ease the comparison between dependent
and non-dependent lung regions. Geometrical ROIs
(layers/quadrants) can be applied to this functional
lung region. However, the definition is purely func-
tional, and the so-defined dorsal region may be dif-
ferent from the dorsal region defined with e.g., CT
scan. Recently, a new method for ROI selection was
described, where on average, each ROI represents an
equal contribution to the TIV of the full EIT record-
ing of interest [19, 32]. This physiological approach is
consistent with using the center of ventilation to sep-
arate the ventral and dorsal lung but includes multi-
ple layers [32].

Clinical applications: controlled ventilation

Several indices were developed to describe the global,
spatial and temporal ventilation distribution, based
on the pixel and/or regional variations of impedance
(Table 2). When used in conjunction with specific venti-
lator procedures, EIT provides regional information that
may be missed by global respiratory mechanics monitor-
ing alone.

EIT to titrate positive end-expiratory pressure (PEEP)
The overdistension and lung collapse (OD-CL) method
[3] has been most used in clinical studies [33—-39] to
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assess the impact of PEEP on regional ventilation dis-
tribution and titrate PEEP. It involves assessing regional
compliance changes, commonly during a decremental
PEEP trial: compliance loss towards higher PEEP is inter-
preted as overdistension (OD), whereas compliance loss
towards lower PEEP represents collapsed lung (CL). The
optimal PEEP is then usually considered the one found at
the intersection of the collapse and overdistension curves
[3]: the PEEP that jointly minimizes both phenomena.
This also assumes that collapse and overdistension con-
tribute equally to ventilator-induced lung injury (VILI),
but in some conditions this may not be true [40]. Nev-
ertheless, a recent meta-analysis demonstrated that this
strategy for individualizing PEEP improves respiratory
mechanics and potentially outcomes in ARDS [36].

The OD-CL method requires driving pressure meas-
urement to estimate regional compliance and should
therefore be performed in volume-controlled ventilation
(with inspiratory pause>0.5 s and no intrinsic PEEP),
when driving pressure can be automatically collected
by the EIT machine or is added by the operator in post-
processing. Otherwise, pressure-controlled mode, with
constant support level and with sufficient time for equi-
libration between alveolar and airway pressures at end-
inspiration and end-expiration (no-flow state), should be
used.

Importantly, since relative regional compliance changes
are computed and thus relative collapse and overdisten-
sion (i.e., highest PEEP=0% collapse, lowest PEEP =0%
overdistension), the chosen PEEP range affects results
[41]. Any remaining collapse at the highest PEEP level
(as per CT scan) is not visible on EIT. Hence, the opti-
mal PEEP reflects the PEEP able to jointly minimize
relative collapse and overdistension only in the explored
PEEP range. To improve reliability and inter-patient com-
parisons, a standardized PEEP window (e.g., from 24 to
6 cm H,O, as previously done [35]) is preferable, espe-
cially for clinical trials. If a narrower range is applied,
especially in non-ARDS or poorly recruitable lungs, a
crossing point close to the boundaries (e.g.,<3 cm H,O
away from the highest or lowest PEEP step) may be an
incentive to consider a wider PEEP range. We also recom-
mend that for intra-patient comparisons, the PEEP range
and steps are kept constant if the PEEP trial is repeated
over time. Nevertheless, in each clinical setting, physi-
cians should choose the acceptable PEEP range according
to the condition of the patients, being aware of the pos-
sible issues associated with smaller PEEP windows. We
summarize the OD-CL method with step-by-step recom-
mendations in Fig. 2. Other EIT-based methods for indi-
vidualized PEEP setting different from the decremental
PEEP trial have also been explored [42], such as evaluat-
ing changes in EELI with PEEP.
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Table 2 EIT parameters and their applications in different ventilation conditions, for clinical and/or scientific purposes (as per current
evidence) as well as bedside availability has been noted

Ventilatory mode Purpose Availability Comments
Controlled  Assisted Non-intubated Clinical Research Bedside Offline
VT distribution + + + + + + +
EELI distribution + + + +/—= + + + EELI dependent
Dorsal fraction of ventilation ~ + + + + + + +
CoV + + + + + + +
Global Inhomogeneity +/- +/- +/- +/- +/- +
OD-CL + +/- +/- + + + Needs standardization
Regional PV-curve + - - +/- + +/-= + Low-flow insufflation
RVD, RVDi + - - +/- + + Low-flow insufflation
Silent spaces + + +/- + + + +
Time constant + +/- +/— - + +
ElT-based R/l ratio + +/- +/- +/- + + + EELI dependent
V/Q matching + +/- +/- +/- + +/- + Needs saline bolus
Volume estimation in SB NA NA + - + +/-= +
Pendelluft detection + + + +/- + +/—- +

+, the expert panel recommend the use of this parameter in this condition; +/—, the expert panel cannot state any recommendation in this condition; —, the expert
panel does not recommend the use of this parameter in this condition

Abbreviations: NA, not applicable; CoV, center of ventilation; EELI, end-expiratory lung impedance; CL, lung collapse; OD, overdistension; PV-curve, pressure-volume
curve; R/l ratio, recruitment-to-inflation ratio; RVD(i), regional ventilation delay (index); SB, spontaneous breathing; VT, tidal volume; V/Q, ventilation-perfusion

3. DECREMENTAL PEEP TRIAL

Mode: PCV (i.e., constant DP), or VCV (only

4. ANALYSIS & PEEP SETTING

H‘MHHH} 30sec, if EIT can assess DP or DP is manually
1. PREPARATIONS [l 10 breaths added during processing; Tplat >0.5 sec) .
HHHH‘;HH‘<—> - check EELI stability at each step

- confirm PEEP steps for computation
- check crossing point PEEP and OD & CL

- turn off automated mattress
- check EIT signal stability & interferences

MHHUH\H;‘

g HRHFERR i i
- avoid fluid bolus & diuretics § T T ffiffe ‘HH”HUH values at crossing point
- stabilize hemodynamics ° W |
’ 41 07 LI N0 g
€ o AT ‘ (IIf < 30
£ HHTTT r . .
= AEELI by APEEP of 2-3cmH,0 3111111111 O crossing point
2. PEEP INCREASE: GO SLOW! 3 y apeeporz-3amio i I < 20 l
— PRI
) O UL 10
- max. 4 cmH,0 per minute
- control hemodynamics (MAP, HR) 04

T T T T T o
PEEP range 24 21 18 15 12 9 6

- stabilize at highest PEEP for 2 minutes
PEEP level (cmH,0)

consider standardizing to 24-6 cmH,0, or lower in non-ARDS/low recruitability

Time
Fig. 2 ElT-based PEEP titration: step-by-step recommendations. The PEEP selection is generally made at the crossing point of the OD and CL curves;
if the crossing point is between two PEEP levels, values are usually rounded up to the nearest integer. Abbreviations: ARDS, acute respiratory distress
syndrome; DP, driving pressure; EELI, end-expiratory lung impedance; EIT, electrical impedance tomography; HR, heart rate; CL, lung collapse;
MAP, mean arterial pressure; OD, overdistension, PEEP, positive end-expiratory pressure; PCV, pressure-controlled ventilation; Tplat, time (duration)
of plateau pressure; VCV, volume-controlled ventilation

Evaluating the impact of specific procedures/interventions  For example, the effect of prone position estimated by

and position

Real-time EIT monitoring can help in the detection of
selective bronchial intubation [43, 44], can show dere-
cruitment induced by endotracheal suctioning [45] or
broncho-alveolar lavage [46] and may help targeting
broncho-alveolar lavage areas [47, 48]. In addition, EIT
can be useful to predict the effect of patient positioning.

EIT could predict the forthcoming gas exchange response
[49], while TIV and EELI variations could inform about
the effects of both prone and lateral positioning [49-52].
EIT could also guide PEEP settings during prone posi-
tioning [53, 54], but the impact on patients’ outcomes
remains to be evaluated. Clinicians must be aware that
patient mobilization could also lead to changes in TIV
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and EELIL, which should not be interpreted as changes in
aeration/ventilation solely.

Evaluate VILI determinants

The reconstruction of global and regional pressure-
impedance curves and of the corresponding regional
inflection points may inform about regional overdisten-
sion or collapse [55-57]. For instance, regional intra-tidal
recruitment, reflecting regional overdistension [58], has
been quantified by the regional ventilation delay (RVD)
index [59] or concavity indices [60]. EIT-based regional
lung opening and closing pressures [61] may be particu-
larly useful in patients with asymmetric lung injury [62].
Currently, bedside availability of these parameters and
evidence for their routine use is limited, but may help
to dynamically titrate tidal volume based on its regional
effects [63]. Clinicians can combine PEEP titration results
with tidal volume guidance from EIT for improving lung
protection [64], also in addition to other techniques, such
as extracorporeal life support (ECCO,R or ECMO).

Clinical applications: spontaneous breathing

EIT may offer valuable insights to safely manage spon-
taneous breathing in patients with acute hypoxemic res-
piratory failure who are at risk of P-SILI [65] and guide
both weaning/extubation and post-extubation phases.
In addition, EIT revealed expiratory muscle recruitment
in ARDS patients, evidenced by an increase in EELI
after paralysis [66]. EIT has been used for monitoring
the effect of different non-invasive respiratory support
modalities (i.e., interfaces, modes, settings) and interven-
tions (e.g., changes in body position) on the ventilation
distribution and regional mechanics [4, 67, 68]. However,
measurements of both respiratory mechanics and EIT
are challenging in awake patients [2], due to the large
variability in breathing patterns and various movement
artifacts. Therefore, only a subset of EIT parameters can
be used in this setting (Table 2). To enhance reliability, we
suggest careful selection of stable breathing phases and
(manual) removal of artifacts if present.

Monitoring tidal volume and respiratory rate

EIT offers a valuable non-invasive estimate of tidal vol-
ume as impedance changes strongly correlate with lung
volume changes [16, 69-71]. However, computation
of absolute tidal volumes with EIT is more complex,
requiring a factor to convert tidal volume to TIV (i.e,
k=VT/TIV). This factor can be obtained reliably during
invasive ventilation, but needs a point calibration with
known tidal volumes in non-intubated patients (e.g., via
spirometry [24], or simpler calibration bag method [71]),
which is often not practical/feasible and guarantees only
short-term stability (i.e., only within one recording).
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Nevertheless, regional TIV distribution assessment is
feasible without point calibration and provides poten-
tially useful insights on regional strain.

EIT also allows accurate monitoring of respiratory rate
during spontaneous breathing [72]. This facilitates EIT-
based estimations of changes in minute volume, when
combined with TIV [22].

PEEP titration

Compared to controlled ventilation, PEEP titration in
assisted ventilation presents additional challenges due to
the variability of respiratory effort, inaccurate measure-
ments of respiratory compliance [73] and hemodynamic
fluctuations [74]. Recently, the regional peak inspiratory
flow at different PEEP steps was suggested as param-
eter to quantify regional mechanics during spontaneous
breathing [75], and EIT and dynamic transpulmonary
pressure were integrated to identify the PEEP that jointly
minimizes lung collapse and overdistension during pres-
sure support ventilation [76]. However, limitations and
technical challenges remain, related to EIT signal stabil-
ity, time-consuming offline analysis, need for esopha-
geal manometry and uncertain accuracy in patients with
increased airway resistance.

Weaning

When applied during the spontaneous breathing trial,
monitoring regional TIV, de-recruitment and regional
inhomogeneities may inform about weaning success [77,
78]. For instance, a reduction in EELI [79-81], higher
global inhomogeneity index [22] and pendelluft [82, 83]
have been associated with spontaneous breathing trial
and/or extubation failure. The predictive role of these
parameters to guide weaning remains to be assessed.

Patient-ventilator interaction

Utilizing the temporal and spatial ventilation distribution
information, EIT enables patient-ventilator interaction
monitoring and dyssynchronies diagnosis [84]. When
combined with flow and/or airway pressure signals, the
regional impact of dyssynchronies can be quantified [85,
86], e.g., in terms of ventilation distribution and regional
overdistension.

Pendelluft

Pendelluft, is ‘the volume of gas passing back and forth
between two pathways’ [87] and the consequence of
inhomogeneities in regional resistances and/or compli-
ances. EIT revealed the occurrence of pendelluft [88]
which was correlated with regional inflammation; both
could be modulated by PEEP [88]. Negative associations
with outcome have been reported [83, 89] but the causal
clinical impact remains to be investigated.
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EIT is the only technique capable of identifying pen-
delluft in real-time. Pendelluft measurements during
spontaneous breathing have been used to: (1) describe
how different ventilatory settings may affect regional
time constants, regional resistances and compliances
[90], (2) describe the air movement between dependent
and non-dependent lung regions during inspiration [85,
91-93], and (3) compute the difference between global
and regional redistribution of gas during the respiratory
cycles [4, 68, 94]. Various EIT-based definitions/compu-
tations have been proposed in different scenarios (Addi-
tional file 2).

Ventilation-perfusion matching

EIT is a promising monitor for regional ventilation-to-
perfusion (V/Q) distribution: the ratio of regional alve-
olar ventilation (ml air/min) to regional blood flow (ml
blood/min). EIT-based V/Q can be performed easily at
the bedside and repeated over time, providing important
advantages as compared to other imaging techniques (i.e.,
CT, SPECT) or to Multiple Inert Gas Elimination Tech-
nique (MIGET), which provide only aggregate results of
V/Q mismatch. In patients with respiratory failure, EIT
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V/Q assessment can improve our understanding of gas
exchange abnormalities, and allows to evaluate the effects
of procedures or ventilator settings on regional V/Q
(e.g., PEEP adjustment [95], prone positioning [96] and
adjunctive therapies, like nitric oxide [97, 98]). Whereas
ventilation-related EIT signals are large and reasonably
well understood, the V/ Q technique is still relatively new
in the clinical context and only a preliminary consensus
on its use is possible at this time.

Perfusion has been measured via (1) conductivity-con-
trasting bolus injection (Bolus technique, Fig. 3), and (2)
through filtering of the pulsatile heart-beat component of
EIT signals (Pulsatility technique). The bolus technique
showed better agreement with both SPECT [99] and PET
[100] and is currently the reference for EIT-based V/Q
assessment.

Bolus technique: procedure

Using a central line catheter, a contrast agent, usually
10 mL of hypertonic saline (usually 5-10% NacCl) [100] is
injected rapidly (in 1-2 s) during a breath-hold of 8-15 s
[101]. EIT images of Q are then calculated by subtrac-
tion of the heart pixels [99], whereas the V component is

A
Ventilation > Apnea + NaCl bolus > < Ventilation —
—RV
— LV
RD
—1LD
A el
VISV
Ao
35 40 45 50 55

Time (s)

OB D!

Fig. 3 lllustration of ventilation-perfusion assessment by EIT. Waveforms and images from ref. [124] in a patient after pulmonary endarterectomy.
A EIT waveforms before and during a NaCl bolus and apnea (3850 s) in four lung quadrants. B Tidal ventilation image prior to the NaCl bolus
and apnea. C Bolus-based perfusion image. The red/yellow indicate the conductivity change during the lung perfusion phase (at approximately
47 s) of the bolus. This is only in the left lung due to the patient’s perfusion defect. D Heart rate-filtered EIT image. E Relative EIT-V/Q image

in the lung region of interest. The color scales used are shown using a log-scale such that 1 indicates mean equal perfusion and ventilation
distribution. No consensus for EIT perfusion or V/Q color scales is available. Abbreviations: RV =right ventral, LV =left ventral, RD = right dorsal,

LD =left dorsal
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calculated by filtering the pre-apnea ventilation signal to
remove heart rate-related components [26] and pixel-by-
pixel V/Q matching can be determined [102]. Software
to automatically process these EIT data to calculate V/Q
images at the bedside is required. If independent meas-
ures of minute ventilation and cardiac output are availa-
ble, a calibrated V/Q image can be calculated [103]; else,
the EIT-V/Q image is unitless (the relative V/Q image).

Considerations and open questions

A concern may arise regarding the electrolytes load of the
saline bolus. Nevertheless, the salt load of the injected
bolus is relatively small (10 mL 5% saline bolus corre-
sponds to 0.5 g (8.5 mEq) of NaCl), and no adverse effects
of electrolyte disturbances after rapid or repeated bolus
administration have been reported to date. However, it is
unclear how the 10 mL requirement scales with patient
mass, blood volume and cardiac output. Several prom-
ising new contrast agents were proposed [104] and are
currently under investigation [105]. Recent data dem-
onstrated the feasibility of calculating EIT-derived V/Q
without apnea, providing new perspectives on its appli-
cation when breath-holds are difficult, e.g., during spon-
taneous breathing [106].

Standardized EIT reporting in clinical

and experimental studies

Considering the impact of the different variables during
EIT acquisition, processing and interpretation, we believe
that a minimum requirement for EIT reporting would
allow traceability, reproducibility and comparability of
EIT studies. We therefore propose minimum standards
for scientific reporting of EIT in clinical and experi-
mental studies (see Additional file 3). This could provide
guidance to researchers and facilitate sustainable imple-
mentation of EIT for individualization of ventilation
management and stimulate development of standardized
open-source analyses pipelines (e.g., ALIVE [107]).

Future directions

In the last two decades, EIT application has consider-
ably increased, both for technological advances and for
a better understanding of respiratory physiology in dif-
ferent settings and under different conditions. Here, we
highlight novel future directions that have not yet been
discussed above.

Diagnosing non-ventilated areas

EIT can evaluate regional ventilation, but no specific
information can be obtained from the absence of ventila-
tion, either determined by physiological (e.g., the ribcage,
mediastinum) or pathological (e.g., pleural effusion, over-
distension, pneumothorax) entities. Hypo-ventilated
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lung areas can be identified (i.e., silent spaces [108]) but
lung contouring is not available on all devices and may
require individual adjustments [109]. One open question
is therefore how to further characterize non-ventilated
areas and how to differentiate tissue properties with
EIT. Absolute EIT (aEIT), often used in the 1980s and
1990s, evaluates the regional absolute impedance val-
ues and not, as the dynamic EIT (dEIT), its changes over
time [110]. By allowing measuring different tissues con-
ductivities, aEIT could potentially distinguish between
structures, therefore improving the understanding of
hypo-ventilated areas.

Devices for simultaneous multi-frequency measure-
ments have already been reported [111-115] but most
of the current clinical/commercial EIT devices are based
on a single frequency and imaging algorithms for multi-
frequency EIT are still under-developed [116, 117]. The
reliable detection of atelectasis and its differentiation
from pleural effusion, pneumothorax and overdisten-
sion according to its spectroscopic properties could be a
promising future application of multi-frequency EIT.

3D-EIT

EIT monitoring of a single horizontal thoracic slice with
a spatial resolution of about 2-3 cm is reasonable for
many clinical applications. However, best spatial resolu-
tion is limited to the regions located closer to the belt.
Movement of the lung and cardiac structures within the
electrode plane, e.g., during a PEEP trial, can cause arti-
facts that can be misinterpreted as recruitment or over-
distension. A potential solution is to create EIT images
in 3D [118, 119], by placing two belts for simultaneous
recording and analyzing them with 3D reconstruction
algorithms [120, 121]. 3D-EIT could also improve image
quality by correcting for out-of-plane changes in imped-
ance and has the potential of enhancing the reliability of
EIT-based V/Q assessment, since lung perfusion is ana-
tomically clearer than in 2D [121]. We encourage further
research on 3D-EIT and the development of devices for
clinical applications.

Machine learning applications

In the year 2024 it would be an omission not to mention
machine learning in a section on future perspectives of
any technology, and EIT makes no exception. Yet only
few applications have been published, including deep
learning models for image reconstruction [122] and fea-
ture extraction for predicting spirometry data and cir-
culatory parameters [123]. We see potential for machine
learning to be valuable at multiple stages. For instance:
image reconstruction (also for 3D-EIT), lung contour
detection, signal filtering, artifact detection and even-
tually correction, and facilitating in complex analyses.
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Ideally, such applications should use raw voltage data
instead of reconstructed impedance signals since these
are already highly processed on-device to serve the
human eye at the bedside.

Conclusion

EIT is a powerful technology for the non-invasive moni-
toring of regional distribution of ventilation and perfu-
sion, offering real-time and continuous data that can
greatly enhance our understanding and management
of various respiratory and circulatory conditions. Its
application may be especially beneficial for critically ill
mechanically ventilated patients, providing insights that
can guide the optimization of ventilatory support, assess
the effectiveness of therapeutic interventions, and poten-
tially improve outcomes. Through continued innovation,
rigorous validation, and collaborative efforts to standard-
ize practices, EIT can become an indispensable tool in
the clinician’s arsenal, ultimately improving patient care
and outcomes in critical care.
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