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PERSPECTIVE

Embracing complexity in sepsis
Alex R. Schuurman1, Peter M. A. Sloot2, W. Joost Wiersinga1,3 and Tom van der Poll1,3* 

Abstract 

Sepsis involves the dynamic interplay between a pathogen, the host response, the failure of organ systems, medical 
interventions and a myriad of other factors. This together results in a complex, dynamic and dysregulated state that 
has remained ungovernable thus far. While it is generally accepted that sepsis is very complex indeed, the concepts, 
approaches and methods that are necessary to understand this complexity remain underappreciated. In this perspec-
tive we view sepsis through the lens of complexity theory. We describe the concepts that support viewing sepsis as 
a state of a highly complex, non-linear and spatio-dynamic system. We argue that methods from the field of complex 
systems are pivotal for a fuller understanding of sepsis, and we highlight the progress that has been made over the 
last decades in this respect. Still, despite these considerable advancements, methods like computational modelling 
and network-based analyses continue to fly under the general scientific radar. We discuss what barriers contribute 
to this disconnect, and what we can do to embrace complexity with regards to measurements, research approaches 
and clinical applications. Specifically, we advocate a focus on longitudinal, more continuous biological data collection 
in sepsis. Understanding the complexity of sepsis will require a huge multidisciplinary effort, in which computational 
approaches derived from complex systems science must be supported by, and integrated with, biological data. Such 
integration could finetune computational models, guide validation experiments, and identify key pathways that 
could be targeted to modulate the system to the benefit of the host. We offer an example for immunological predic-
tive modelling, which may inform agile trials that could be adjusted throughout the trajectory of disease. Overall, we 
argue that we should expand our current mental frameworks of sepsis, and embrace nonlinear, system-based think-
ing in order to move the field forward.
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Background
Sepsis is defined as life-threatening organ dysfunction 
caused by a dysregulated host response to infection [1]. 
Biomedical research has sought to dissect the patho-
physiology of sepsis for decades, which has led to a rich 
understanding of the separate components that together 

manifest sepsis [2]. However, the totality of sepsis has 
remained ungovernable, as effective, clinically imple-
mented therapies remain elusive. This is not for a lack of 
effort: numerous trials have been performed over the last 
30 years, but without success. The cause of this failure is 
likely multi-facetted, including a disregard for heteroge-
neity and uncertainty, and a translational gap between 
pre-clinical and clinical models [3, 4]. While these con-
siderations are relevant, we here argue for a more funda-
mental problem: the complexity of sepsis cannot be fully 
understood by single-timepoint, reductionist studies. 
The interplay between all components of sepsis together 
results in emergent behaviour that is more than and dif-
ferent from the sum of its parts. Emergent properties are 
central to complex systems, although the term ‘emer-
gence’ can remain somewhat vague due to a variety of 
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definitions and interpretations [5]. In essence, complex 
systems can display properties or behaviour that can-
not be reduced to, or understood and predicted by, the 
individual components that make up the system. While 
it may feel self-evident that sepsis represents such an 
emergent state, still the vast majority of studies is based 
on a single biological snapshot of patients, often limited 
to a specific part of pathophysiology. In order to fully 
understand sepsis, it is pivotal that we complement these 
research efforts with approaches derived from complex 
systems science.

In this perspective we will discuss sepsis through the 
lens of complexity theory. We describe what non-linear, 
dynamic mechanisms contribute to the emergent state 
of sepsis, and how one can evaluate complex systems 
like the host response to infection. We highlight the pro-
gress that has been made in the understanding and anal-
ysis of complex adaptive systems and discuss why these 
advancements have remained generally unrecognized 
and have yet to translate into clinical tools. We consider 
the implications of treating sepsis as a complex and non-
linear system, with regards to measurement, research 
approaches and trial design. Specifically, we advocate 
more emphasis on longitudinal biological data, computa-
tional modelling and model-informed interventions.

The complex nature of sepsis
The host response during sepsis involves the interplay 
between immune cells, cytokines, the coagulation cas-
cade, the endothelial response, the complement system, 
the gut microbiome, the neuro-endocrine system, altered 
energy metabolism, the failure of whole organ systems, 
mechanical and pharmacological interventions by doc-
tors, the erosive sequelae of comorbidities, one or more 
causative pathogens, and other factors [2]. Zooming 
in, the physiological components each consist of inte-
grated molecular layers—such as the (epi)genome, tran-
scriptome, and metabolome—that further add to the 
complexity of sepsis [6]. These elements are highly inter-
connected, often linked by nonlinear relationships; input 
is not necessarily proportionally related to output. More-
over, these connections are not static over time, and may 
depend on their spatial context within tissues and the 
body. Interactions can change as certain thresholds are 
met, feedback loops are activated or, zooming out, as dis-
ease further progresses along its natural course. Finally, 
this host response system is, by definition, dysregulated 
in sepsis. Together this delineates a spatio-temporal, 
complex and nonlinear system of which the resulting 
behaviour cannot be captured by separate analysis of the 
elements that it comprises. Sepsis is a typical ‘wicked’ 
systemic problem; by reducing it to its constituting com-
ponents we lose what we are actually looking for. Indeed, 

while “-omics” technologies revolutionized the resolu-
tion of our snapshots of the host response during sep-
sis, the overall trajectory and outcome of this system has 
remained largely beyond our grasp.

Complexity theory
The host response during sepsis fits the description of 
systems that can be analysed by complexity theory. Com-
plex systems science seeks to understand systems that 
show behaviour that cannot be explained by its individual 
parts. Rather, the system state is shaped by intra-network 
dynamics, such as feedback loops or the connectivity of 
the system components, and external pressure on the 
system [7]. Perhaps counterintuitively, highly complex 
and dynamic systems—such as the earth’s climate, stock 
markets, and the human body—exist in a continuous 
state of non-equilibrium: they are thermodynamically 
open systems that display a remarkable resilience to per-
turbation. However, once the balance is tipped beyond 
a certain threshold, perturbations can rapidly propagate 
into profound, system-wide dysregulation. Due to path 
dependency, there is often no easy way to bring the sys-
tem back to its original state.

Medical professionals are used to working with com-
plexity to some extent, both on a healthcare system level 
[8], as well as on a biological level. While they may not 
label it as such, clinicians have to deal with the emergent 
properties of sepsis regularly: classic symptoms like vaso-
genic shock—inadequate tissue perfusion due to the loss 
of vascular tonus, temperature changes, altered states of 
consciousness, and coagulation disorders are examples of 
this. Scientifically, there have been considerable advances 
in the analysis and understanding of complex adaptive 
systems over the last decades. In the next paragraphs we 
will show how quickly complex behaviour and uncer-
tainty can emerge in biological models, and the merit of 
methods like agent-based modelling, network analyses 
and cellular automata in analysing the host response. For 
further reference, Handel and colleagues recently pub-
lished an excellent overview of different types of compu-
tational models that have been applied in the context of 
immunology [9].

The emergence of complexity and uncertainty
A recent study showed how changing the amplitude 
of an oscillatory tumor necrosis factor (TNF, a proto-
typic proinflammatory cytokine) signal could generate 
chaotic dynamics of nuclear factor (NF)-kB expression, 
which resulted in a more economic production of pro-
tein complexes, and a survival benefit for cell popula-
tions [10]. The highly complex dynamics of cytokines 
provide another example [11]. Most cytokine interactions 
are nonlinear, which can lead to unpredictable results: 
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agent-based modelling demonstrated that blood leu-
kocytes display a nonlinear response to endotoxin, and 
produce chaotic NF-kB and TNF levels above a certain 
stimulation threshold [12]. Similarly, a computational 
study showed that activation of the complement system 
follows a nonlinear model, indicating that small initial 
changes can rapidly escalate into cascading and diverg-
ing trajectories [13]. These relatively simple models all 
reflect uncertainty—the relative degree of our inability 
to predict the future. Uncertainty is a fundamental fea-
ture of complex systems and, although often ignored or 
undervalued, highly relevant in biomedical research and 
healthcare [14]. The aforementioned models reflect how 
uncertainty already plays a role in controlled biological 
systems with only a few variables, which may evince how 
the host response to infection is inherently unpredict-
able: it is precisely such feedback mechanisms, nonlinear 
dynamics and cascading pathways that drive escalating 
perturbations—and uncertainty—in a patient with an 
infection. Of course, a treating physician also deals with 
variance introduced by individual genetic traits, comor-
bidities, medications, timing of clinical presentation, and 
myriad other factors.

Computational advances in modelling 
and understanding immunology and sepsis
Needless to say, sepsis pathophysiology extends beyond 
the isolated and static models mentioned above, and 
involves changes over time and between tissues. Sev-
eral methods can be used to capture and analyse such 
spatio-temporal dynamics [15]. Pigozzo and colleagues 
specifically modelled the response of the innate immune 
system to lipopolysaccharide (LPS, a bacterial product) 
in a dynamic computational model based on partial dif-
ferential equations [16]. By including several cell types, 
pro-and anti-inflammatory cytokines, and the diffusion 
between the vascular system and tissues, the model is able 
to reproduce features like the temporal influx of specific 
cell types and the cytokine-mediated resolving of inflam-
mation. More recent work expanded on this concept, 
with the incorporation of clinical, patient-derived data in 
order to validate computational results [17]. A different 
approach to incorporate spatial and temporal dynamics 
is the use of cellular automata, which are abstract collec-
tions of cells that have distinct states and are organized 
within a grid of finite number of dimensions. The states 
of these cells can be updated over time, in a discrete or 
probabilistic manner (called stochastic cellular autom-
ata), and thereby recreate interactions and organizing 
behaviour that can model the immune system [18, 19]. 
Such approaches have been used to model the micro-
environment of the lung during tuberculosis infection 
[20], study the balance between necrosis and apoptosis 

in neutrophils during inflammation [21], or analyse the 
concerted behaviour of cell populations [22]. It is also 
possible to model the interaction between different sub-
systems. In a two-layer model of inflammation—in which 
the innate immune system and parenchymal cells each 
oscillate, and indirectly interact through cytokines—it 
was shown how the complex dynamics between layers 
could lead to a healthy synchronized state, or a pathologi-
cal state of the parenchyma [23]. Such analyses provide 
information on how the dynamics between sub-systems 
can determine state-transitions, which in a clinical sense 
could for instance translate as organ failure in a patient 
with sepsis. Network-based analyses, in which features 
are often represented as nodes, and connections as edges, 
also play a key role in understanding and visualizing 
complex systems. Networks can be constructed at mul-
tiple levels: for dynamic molecular intracellular pathways 
[24], for crosstalk [25] and interactions [26] between 
cells or populations of cells, or to represent the spatial 
organization within tissues [27]. Mostly, the combina-
tion of -omics technologies and network-based analyses 
has enriched our understanding of the molecular basis 
of immune activation on an intra- and intercellular level 
[28, 29]. Herein the surge in availability of high-dimen-
sional datasets may allow for the use of machine learn-
ing techniques [30], although the “black box” nature of 
many of those methods makes it challenging to actually 
derive at functional and mechanistic insights. A combi-
nation of network-analyses with computational models, 
thereby mathematically defining the edges between the 
nodes and quantifying these interactions, could form the 
basis for predicting how the host might respond to infec-
tion. For instance, a recent “whole-body” computational 
model reproduced how systemic inflammation can cause 
relative hypovolemia through endothelial hyperperme-
ability, and the effects of fluid administration and norepi-
nephrine hereon [31]. The model also showed differential 
patient outcomes when certain interventions were intro-
duced, illustrating the potential translational and predic-
tive value of such models. Together, these methodologies 
and studies each reflect considerable progress in analys-
ing complex adaptive systems. Ideally these methods 
should complement and enhance each other, rather than 
be used in isolation [32]. One example is the combination 
of artificial neural networks and agent-based modelling, 
which has been used to predict cytokine trajectories and 
disease progression in (virtual) patients with sepsis [33].

Lessons to be learned from how complexity 
was portrayed
More than two decades ago, Seely and Christou already 
stated that the host response to invading pathogens 
should be viewed as a complex nonlinear system, and 
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how linear thinking may be the root of the failure of 
immunomodulatory trials in sepsis [34]. The authors 
argued for a focus on the variability and connectivity of 
variables, rather than the values of individual variables 
themselves, and an overall shift towards system-based 
thinking. Some years later, others proposed that a “magic 
bullet” therapy for sepsis is unobtainable due to the com-
plex and chaotic nature of this syndrome [35]. Indeed, 
the linear analyses and crude endpoints—such as mor-
tality—that are often used in randomized clinical trials 
are insufficient to model the complexity of sepsis [3, 36]. 
Since then, the field of complexity science has made sub-
stantial progress in analysing and understanding dynamic 
complex systems like the host response (as described in 
the paragraph above). However, despite these consider-
able advances, complex systems science has continued to 
fly under the scientific radar of the general critical care 
community. Why? We can identify several barriers that 
have contributed to this disregard for complexity: vague 
terminology, fundamentally different approaches to anal-
ysis, and the reality that complexity science is hard to 
directly channel into concrete tools.

Firstly, the informal use of the term ‘complexity’ is 
opaque and of itself non-explanatory, as exemplified by 
the Cambridge Dictionary’s definition: “Complexity: the 
state of having many parts and being difficult to under-
stand or find an answer to.” To most, the statement ‘sepsis 
is complex’ will thus mean ‘sepsis is difficult’, and not con-
vey the non-linearity, caveats and necessary methods that 
are entwined with complex systems. Imprecise use and 
understanding of ‘complexity’ and associated terms can 
have concrete negative consequences. It can lead to the 
impression that complexity is generally considered and 
examined in sepsis, while the formal, rigorous method-
ology that is necessary to work with complexity actually 
remains lacking. This in turn may impede further devel-
opment of relevant methods, and widen the gap between 
the clinical community and fields like computational 
modelling and systems biology. Another point lies within 
the perceived dichotomy between reductionism and 
complexity science as an approach to study sepsis. When 
confronted with the limitations and biases of reductionist 
approaches in studying sepsis, terms like ‘intrinsic uncer-
tainty’ or ‘irreducible complexity’ can induce a certain 
nihilistic stance: “the totality of sepsis is too complex to 
ever fully understand”. In a field that mainly seeks tangi-
ble tools with clinical benefits, this has led to an overall 
disregard for methods typically employed in complex sys-
tems science.

Secondly, complex adaptive systems are poorly 
captured by the phenomenological models that are 
generally practiced in biomedical research. Phenom-
enological models—with methods such as group 

comparisons, correlations and regression—try to find 
patterns within data [9]. The goal is to approximate cau-
sation, or to classify and predict without necessarily hav-
ing to understand the exact mechanisms that underpin 
the system. This can be advantageous: if observational 
data and clinical trials identify interventions that improve 
patient outcome, it is not critical to exactly understand 
why, as long as the pros outweigh the cons. However, cor-
relations and patterns within complex adaptive systems 
can be misleading, or products of very counterintuitive 
mechanisms. The assumption that patterns found in data 
are a predictor for the future behaviour of a system does 
not hold true for complex adaptive systems and interven-
tions in complex systems, unless the future is fundamen-
tally the same as the past. The state of complex systems 
may still be predicted [37], although the accuracy can 
quickly diminish as the prediction window increases. 
Data distributions in complex systems often follow power 
laws, and rarely obey Gaussian statistics. Outliers or 
“exceptions” have more importance, and can even drive 
the future dynamics of the system. Thus, complex sys-
tems require fundamentally different approaches towards 
analysis, generally guided more by mathematics, than 
usually practiced in biomedical research (see the recent 
opinion piece of Succi and Coveney for further reading 
[32]).

Finally, the task of understanding the complexity of 
sepsis is daunting, both in terms of scope and difficulty, 
and the road from complexity science to clinical tools 
is long. The multiplicity of components and considera-
tions, the computational challenges and the lack of tan-
gible tools can be discouraging. Despite these challenges, 
we believe it is crucial to embrace complexity science to 
better understand and treat sepsis. Herein, initiatives like 
the Society for Complex Acute Illness (SCAI, scai-med.
org) have shown to be valuable in bringing together cli-
nicians, basic scientist and computational modelers. 
The progress that has been made over the last decades is 
encouraging and will only accelerate if the concepts and 
methods derived from complexity science make their way 
into the toolkit of the general scientific community. The 
next paragraphs provide examples of what this may look 
like.

Embracing complexity in sepsis
Analysing complex dynamic systems requires a radi-
cally different approach to measurement. Most of sep-
sis research is based on high-resolution snapshots of 
(peripheral) parameters, often focused on one or two 
molecular layers such as plasma proteins or the whole-
blood transcriptome. Studies usually include one time-
point of measurement (for instance, the moment of 
admission to the intensive care unit), based on which 
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patients are phenotyped, endotyped, clustered and ran-
domized. Although the resolution of these measurements 
has undergone remarkable improvement over the last 
decades, dynamic processes continue to be overlooked. 
Such cross-sectional data will not capture the nonlin-
ear kinetics, feedback mechanisms, and spatio-dynamic 
relationships that might govern sepsis (patho)physiol-
ogy on a molecular level. Although there are interest-
ing advances in estimating longitudinal dynamics from 
cross-sectional data [38], the inclusion of (many more) 
timepoints in study designs is the most robust solution. 
This will require a re-evaluation of how time and fund-
ing is spent: longitudinal biological monitoring is expen-
sive, and requires a trade-off with sample size. Still, we 
believe that this approach towards measurement is piv-
otal for a fuller understanding of sepsis pathophysiology, 
as the resulting biological data could serve to validate and 
tune the computational methods that were described in 
the former paragraph. Integrated computational mod-
els could guide validation experiments and identify key 
nodes or pathways that could be targeted to modulate 
the emergent system state to the benefit of the host. 
Eventually such models could be used for pre-clinical, 
virtual testing of interventions, and the predictive mod-
elling of the host response to infection. It is notable that 
studies utilizing continuous clinical data to study sepsis 
have made considerable progress, for instance by recog-
nizing sepsis earlier with an early warning score based 
on machine learning of continuous electronic health 
record data [39]. Continuous monitoring and analysis of 
vital sign variability provides another example [40], with 
promising preliminary results regarding the diagnosis 
[41], outcome prediction [42, 43], and early identifica-
tion of deterioration in patients with sepsis [44]. While 
such approaches do not necessarily elucidate the patho-
physiological mechanisms of sepsis, they do illustrate 
the power of more continuous data. Detailed longitudi-
nal biological data in sepsis is virtually non-existent—an 
indirect consequence of the overall disregard for dynamic 
changes—which limits comparable studies focused on 
the pathophysiological mechanisms of sepsis.

Immunological predictive modelling as an example
Meteorological forecasts demonstrate that, within limits, 
the state of dynamic complex systems can be predicted 
by analysis of large-scale continuous data and extrapola-
tion from previous states [37]. Such comprehensive and 
integrated models of the host response are hypothetical 
at this point. While studies have tried to combine agent-
based models with machine learning or deep reinforce-
ment learning to model and predict sepsis [45, 46], the 
sparsity of continuous biological data remains a bot-
tleneck. One could imagine ‘immunological weather 

stations’ that monitor a flow of multi-omics data neces-
sary to reveal the mechanisms underlying the emergent 
state of the host response. Although this is technologi-
cally not yet feasible, technology has a way of outpacing 
expectations. Non-invasive approaches like molecular 
imaging are promising, in which radioisotopes, reporter 
genes, monoclonal antibody-based tracers and peptide-
labelling can be leveraged to monitor the location, abun-
dance, metabolism and activation status of immune cells 
in vivo [47]. Other read-outs, like the dynamic velocity of 
immune cells in the circulation through time-lapse MRI 
[48, 49], or the tracking of bacterial populations through-
out the body [50], are also possible. Embedding such 
dynamic, patient-derived data into an integrative com-
putational model of the host response could help to infer 
and predict the patient state during sepsis. As a concrete 
example of how this may look, we recently published a 
quantitative computational model of systemic inflam-
mation in patients undergoing cardiothoracic surgery 
[17]. The model was calibrated and validated with clini-
cal data, and was able to predict the dynamic responses 
to certain interventions. In Fig. 1 we provide a different 
example of predictive immunological modelling, based 
on the uncertainty modelling that is practiced in mete-
orology [37]. It is important to realize that immunology 
is only part of a larger system, and that components like 
coagulation, hormones and energy metabolism are still 
ignored. A fully comprehensive model will require a huge 
multidisciplinary effort to materialize, combining com-
putational, experimental and clinical work.

Towards trials and clinical applications
A more holistic view of sepsis pathophysiology should 
impact how we design trials. If we assume that the most 
important approach—aside from supportive care—to 
improve clinical outcome is modulation of the dysregu-
lated host response, then we must first understand how 
we can shape the behaviour of this system to improve 
clinically relevant outcomes. From a complexity theory 
point of view, it is highly unlikely that a single, invari-
able intervention can do this, or let alone influence 
crude outcome measures such as mortality. Ideally, cli-
nicians would only ‘nudge’ specific parts of the host 
response during (or prior to) sepsis, in order to bias 
the system towards a return to homeostasis. But when 
and where to push? Due to a general lack of longitudi-
nal data it remains unclear when an adequate response 
to infection becomes a dysregulated one; the tipping 
point of sepsis is still unknown. With appropriate lon-
gitudinal data, complexity modelling may help to rec-
ognize instability in an early phase and identify when 
to act. Based on continuous monitoring of the variabil-
ity of vital parameters, predictive instability modelling 
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[51] and machine learning-based methods [39] have 
shown to identify patient deterioration in an early stage. 
Such methods might also be applied on biological data, 
if these were available. Furthermore, the goal, the state 
we want the host response to be in, is yet undefined. To 
pursue a return to normal homeostasis is to ignore the 
constraints of the disease, which most likely requires a 
dynamic host response throughout its course to be con-
trolled. An appreciation for dynamic changes may inform 
more ´agile´ trials, which can be designed to be adjusted 
throughout the trajectory of the disease. Patient-derived 
biological data could be collected at multiple time-
points and combined with a computational model, based 
on which the intervention can be modulated. Such an 
approach would not require a fully comprehensive inte-
grated computational model of the host response, which 
is unattainable at the moment, but rather a computa-
tional tool that specifically models the mechanisms that 
are targeted by the intervention.

These ideas are not new. Already in 2004 the concept 
of in silico clinical trials was introduced and evaluated in 
the context of sepsis. In one study, agent-based modelling 
of the innate immune response was used to simulate the 
effects of various anti-cytokine therapies to virtually treat 
a systemic inflammatory response syndrome, revealing 
that none of the tested therapies resulted in improved 
system survival [52]. In a different setup, Gilles Clermont 
and colleagues constructed a mechanistic model of the 
acute inflammatory response using differential equa-
tions, and subsequently designed a clinical trial to test 

several anti-TNF regimens in 1000 virtual patients in 
which several host and pathogen properties were varied 
to introduce heterogeneity [53]. With this approach the 
authors found that anti-TNF benefitted one subgroup of 
patients, but harmed another, an effect that was strongly 
dependent on the dose and duration of the therapy. Simi-
larly, virtual ‘agile’ trials—using predictive modelling to 
seek a control strategy to continuously push a system 
towards an optimal state or trajectory—have suggested 
that successful therapies in sepsis will require a multi-
target strategy that varies in dosage and timing [45, 54, 
55]. Despite these and other computational advances [15, 
56], it is dispiriting to note that now, almost two decades 
later, the role for computational modelling in clinical trial 
design remains minimal. To change this, we must over-
come the barriers we previously described, calibrate and 
validate computational models with detailed longitudinal 
biological data collected in relevant clinical settings, and 
bring together clinical and computational disciplines.

Conclusions
While clinical applications may be decades away, the 
main point is this: the host response during sepsis is an 
extremely complex and nonlinear process, which can 
result in emergent behaviour that cannot be captured by 
single-timepoints and isolated analyses of specific host 
response features. While this may perhaps feel obvious, 
the reality is that the vast majority of sepsis research is 
still based on such measurements. A fuller understand-
ing of the emergent behaviour of sepsis pathophysiology 

Fig. 1  A schematic overview of immunological predictive modelling. The current immunological state of the patient is inferred from a flow 
of biological data. The dynamics of these data are used to generate an ensemble of predicted immunological states over time, reflecting the 
uncertainty of the initial state measurements and analysis errors. Forecasts are combined into a single integrated prediction, which provides a 
probabilistic assessment of how the immunological landscape evolves over time. The certainty of this prediction decreases as the time window 
increases. Concept and figure are inspired by the work of Peter Bauer and colleagues [37]
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warrants a revision of how biological measurements are 
currently collected and analysed. This will require a reap-
praisal of how focus and funds are currently allocated; 
longitudinal or continuous sampling is labour-intensive 
and costly. However, such data will facilitate a more 
prominent role for techniques like dynamic computa-
tional models and network-based analyses, which have 
the capacity to capture mechanisms that would otherwise 
be missed. In turn, this can inform more dynamic trials 
that seek to influence treatable traits by continually push-
ing the host response to a more beneficial state. In this 
Perspective we mostly advocated a shift towards longitu-
dinal biological data collection, but more is needed. It is 
hard to overstate the importance of rigorously character-
izing, defining and modelling the host response, the sys-
tem that we as clinicians seek to influence, in explicit and 
clear terms. This will help clarify the merits and limits of 
our current methods and approaches, and pave the way 
towards the endgame: altering the disease trajectory of 
a patient with sepsis through targeted, model-informed 
interventions [15, 56].

The complexity of sepsis pathophysiology requires us 
to expand our current mental frameworks, and embrace 
nonlinear, system-based thinking in order to move the 
field forward.
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