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Abstract
Cognitive dysfunction is common in critically ill patients, not only
during the acute illness but also long after its resolution. A large
number of pathophysiologic mechanisms are thought to underlie
critical illness-associated cognitive dysfunction, including neuro-
transmitter abnormalities and occult diffuse brain injury. Markers that
could be used to evaluate the influence of specific mechanisms in
individual patients include serum anticholinergic activity, certain
brain proteins, and tissue sodium concentration determination via
high-resolution three-dimensional magnetic resonance imaging.
Although recent therapeutic advances in this area are exciting, they
are still too immature to influence patient care. Additional research
is needed if we are to understand better the relative contributions of
specific mechanisms to the development of critical illness-
associated cognitive dysfunction and to determine whether these
mechanisms might be amenable to treatment or prevention.

Introduction
Since its advent more than 40 years ago, the specialty of
critical care has made remarkable advances in the care of
severely ill patients. Mortality rates for many commonly
encountered critical illnesses such as severe sepsis [1] and
acute respiratory distress syndrome (ARDS) [2] have
declined sharply over the past 2 decades. As greater numbers
of patients survive intensive care, it is becoming increasingly
evident that quality of life after critical illness is not always
optimal. For instance, nearly half of ARDS survivors manifest
neurocognitive sequelae 2 years after their illness, falling to
below the 6th percentile of the normal distribution of
cognitive function [3]. Considering that 89% of Americans
would not wish to be kept alive if they had severe, irreversible
neurologic damage [4], these findings are quite concerning.

Cognitive dysfunction (CD) is quite common in critically ill
patients, not only during the acute illness but also long after

the acute illness resolves [5]. Delirium, a form of acute CD
that manifests as a fluctuating change in mental status, with
inattention and altered level of consciousness, occurs in as
many as 80% of mechanically ventilated intensive care unit
(ICU) patients [6]. Most clinicians consider ICU delirium to be
expected, iatrogenic, and without consequence. However,
recent data associate delirium with increased duration of
mechanical ventilation and ICU stay [7], worse 6-month
mortality [8], and higher costs [9]. Chronically, critical illness-
associated CD manifests as difficulties with memory,
attention, executive function, mental processing speed,
spatial abilities, and general intelligence. Interestingly,
patients who develop acute CD often go on to develop
chronic CD after hospital discharge [10-13], suggesting that
the two entities may share a common etiology.

Although there are clearly defined risk factors for critical
illness-associated CD, there is little understanding of the
underlying pathophysiology. The precise mechanisms are
unknown and there are likely to be multiple mechanisms at
work in any given patient (Figure 1) [5,14,15]. We have
chosen to focus on two mechanisms that appear to have the
greatest merit: neurotransmitter abnormalities and occult
diffuse brain injury. In this bench-to-bedside review, we
discuss the evidence supporting these mechanisms, potential
markers that could be used to evaluate each mechanism in
individual patients, and emerging therapies that may prevent
or mitigate critical illness-associated CD.

Neurotransmitter abnormalities
For more than a century, clinicians have recognized that
anticholinergic medications are a cause of both acute and
chronic CD [16]. The mechanism is thought to be a direct
reduction in central cholinergic activity [17], leading to
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relative dopamine excess in the central nervous system
(CNS). Antipsychotics such as haloperidol, which antagonize
central dopamine receptors, can counteract the cognitive
effects of anticholinergic medications, further supporting the
anticholinergic hypothesis.

Drugs with potent central anticholinergic effects, such as
tricyclic antidepressants and antihistamines, are particularly
likely to cause delirium. Many medications that are commonly
used in the ICU yet not generally considered to be anti-
cholinergic, such as H2 blockers, opiates, furosemide, digoxin,
glucocorticoids, and benzodiazepines, were recently shown
to have central anticholinergic properties [16,17]. Volatile
anesthetics, such as sevoflurane, and intravenous anesthe-
tics, such as propofol, also have anticholinergic effects and
may be responsible not only for postoperative delirium but
also for the more complex phenomena of postoperative
cognitive dysfunction [18]. Acute illness itself may be
associated with production of endogenous anticholinergic
substances [19]. In one study, 8 out of 10 elderly medical
inpatients had had detectable anticholinergic activity in their
serum, even though no medication used by these individuals
had anticholinergic activity. Characterization of such
substances might improve our understanding of delirium and
lead to useful intervention strategies. Considering that
activation of specific cholinergic pathways can inhibit pro-
inflammatory cytokine synthesis and protect against endo-
toxemia and ischemia-reperfusion injury [20], it is tempting to

speculate that inhibition of these pathways, whether
exogenous or endogenous, might contribute not only to CD
but also to other outcomes of critical illness.

In assessing the overall risk for developing CD posed by
medications with central anticholinergic activity in a given
patient, individual differences in drug pharmacokinetics make
the dose received a poor estimate of a patient’s overall
anticholinergic burden [21,22]. However, we can objectively
measure anticholinergic burden in individual patients using an
assay referred to as serum anticholinergic activity (SAA) [16].
First described by Tune and Coyle [23], SAA measures the
ability of a individual’s serum to block central muscarinic
receptors using a rat forebrain preparation. Elevated SAA
levels are associated with cognitive impairment in studies of
medical ward inpatients and community dwelling seniors
[16,24-27]. Only a single, small study has used this assay to
investigate CD in ICU patients. Golinger and colleagues [28]
examined SAA levels in surgical ICU patients and found the
mean SAA level drawn 4 hours after mental status change
was significantly greater in delirious patients (n = 9) than in
those without delirium (n = 16; 4.67 ng/ml versus 0.81 ng/ml;
P = 0.007). Whether these results apply to all critically ill
patients is uncertain because no study has examined SAA
across a broad range of ICU admitting diagnoses or in
medical ICU settings. Furthermore, because SAA measure-
ment requires fresh rat brain preparations, its use is likely to
remain limited to research settings for the foreseeable future.

Figure 1

Pathophysiologic mechanisms and predisposing factors thought to underlie critical illness-associated cognitive dysfunction [5,14,15]. 
Apo, apolipoprotein; HIV, human immunodeficiiency virus; 5-HT, serotonin (5-hydroxytryptamine); GABA, γ-aminobutyric acid; NE, norepinephrine
(noradrenaline).
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Other neurotransmitter systems such as dopamine, serotonin,
γ-aminobutyric acid (GABA), norepinephrine (noradrenaline),
and glutamate are also thought to contribute to critical illness-
associated CD. Dopaminergic hyperfunction is thought to
underlie the cognitive symptoms of schizophrenia, and
dopamine administration itself may be a risk factor for delirium
[29]. Serotonin syndrome, a consequence of excess seroto-
nergic agonism, can be seen not only with selective serotonin
reuptake inhibitors but also with a variety of drugs and drug
combinations [30]. Even a single therapeutic dose of an
selective serotonin reuptake inhibitor can cause the syn-
drome, which manifests as mental status changes, autonomic
hyperactivity, and neuromuscular abnormalities.

GABA abnormalities are thought to contribute to hepatic
encephalopathy, perhaps mediated by branched chain and
aromatic amino acids acting as false neurotransmitters [31].
Excess GABA activity, such as that which occurs after with-
drawal from chronic ethanol or benzodiazepine use, is a well
known and quite dangerous cause of delirium [32]. Acutely,
sedatives that stimulate GABA receptors, such as benzo-
diazepines and (probably) propofol, impair cognitive function
and are deliriogenic [8,33-35]. This raises the possibility that
strategies to minimize sedative drug accumulation, such as
daily interruption of sedative infusions [36], which have been
shown to reduce duration of mechanical ventilation, and ICU
and hospital length of stay, might also reduce the incidence
or duration of delirium. Whether these sedative drugs lead to
neurocognitive deficits long after their use is unknown, but
this has been suggested in certain high-risk groups, such as
the very old (>75 years) and those with pre-existing cognitive
impairment [37,38].

Noradrenergic hyperfunction, as part of the ‘fight or flight’
response, can lead to panic attacks and delusions. Glutamate
has been implicated in the ‘Chinese food syndrome’, in which
food with high amounts of monosodium glutamate interferes
with normal neurotransmission causing confusion [39]. For a
more complete review of the other neurotransmitter abnor-
malities that may underlie delirium, the reader is referred else-
where [40,41].

Occult diffuse brain injury
If critical illness-associated CD were solely due to acute
medication effects, it would probably resolve after the
exposure has ended. However, a significant percentage of
individuals developing delirium in the hospital continue to
demonstrate symptoms of CD after discharge [10-13]. These
patients manifest decreased cerebral activity and increased
cognitive deterioration, and are more likely to develop
dementia than patients without delirium. Also, patients who
develop delirium have a greater rate of decline on cognitive
tests than do nondelirious patients [10-13]. Taken together,
these observations raise the possibility that some degree of
occult diffuse brain injury, as a consequence of the local
hypoxia, hypoperfusion, cytokine-mediated inflammation and

microvascular thrombosis that characterize the multisystem
organ dysfunction of critical illness, might have occurred in
these patients [42]. Given that every other organ system can
be damaged by these forces, it seems implausible that the
brain would be uniquely spared.

Many of the data supporting occult diffuse brain injury as a
cause of critical illness-associated CD come from studies of
sepsis and septic encephalopathy, a form of delirium. In
animal models of sepsis, oxidative damage occurs early in the
hippocampus, cerebellum, and cortex [43], and significant
alterations in cerebral vascular hemodynamics and tissue
acid-base balance indicate that cerebral ischemia and
acidosis do occur [44-48]. Sharshar and colleagues completed
several studies comparing brain pathology in small numbers
of patients who died from septic shock with that in patients
who died from other causes. Septic patients demonstrated
diffuse severe ischemic and hemorrhagic CNS lesions [49],
which correlated with persistent hypotension and severe
coagulation disorders. Multiple microscopic foci of necrosis
involving the white matter of the pons [50] were seen, as well
as ischemia and apoptosis within the cerebral autonomic
centers [51]. The white matter lesions were associated with
elevated levels of proinflammatory cytokines, suggesting a
possible role of inflammation and microvascular thrombosis in
the genesis of CNS injury [52]. Although those studies
demonstrated that ischemic brain injury occurs in sepsis, they
did not determine whether delirium occurred.

Two studies attempted to examine the relationship of ischemic
brain injury to delirium. In one study of 84 patients with severe
sepsis and multiple organ dysfunction [53], severe hypotension
was the only factor in multivariable analyses that was asso-
ciated with delirium, suggesting that sepsis-related encephalo-
pathy may be caused by ischemic damage rather than meta-
bolic abnormalities. Another study examined cerebral blood
flow and cerebral oxygen metabolic rates in patients with septic
encephalopathy and multiple organ dysfunction [54], and it
found that both were significantly lower than those in normal
awake individuals. Although these studies support the idea of
occult brain injury as a cause of delirium, the authors did not
use a standardized Diagnostic and Statistical Manual of Mental
Disorders (DSM)-IV based tool to diagnose delirium, such as
the Confusion Assessment Method for the ICU [6].

Lending support to the hypothesis that acute inflammation
leads to brain injury and subsequent development of delirium,
a recent study found that delirium in postoperative hip-
fractured patients was significantly associated with serum
levels of C-reactive protein, an acute-phase protein that is a
marker of acute inflammation [55]. Importantly, patients in the
study were diagnosed with delirium using the Confusion
Assessment Method (the ward-based predecessor to the
Confusion Assessment Method for the ICU), providing the
first DSM-IV based evidence that acute inflammation may be
in the causative pathway of delirium.
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The brain is a target for free radical damage because of its
large lipid content, high rate of metabolism, and low anti-
oxidant capacity. Free radical induced oxidative stress may
play a role in the delirium seen after cardiopulmonary bypass.
Karlidag and colleagues [56] noted that patients with low
preoperative levels of catalase, a erythrocyte-based anti-
oxidant enzyme, were more susceptible to delirium post-
operatively. They suggested that preoperative catalase levels
might some day be used to identify at-risk patients who
could then be put on antioxidant treatment preoperatively.
Whether this would reduce the incidence of delirium remains
speculative.

Regional cerebral blood flow appears to be reduced in
delirium. Using xenon-enhanced computed tomography (CT),
Yakota and colleagues [57] demonstrated significant focal
and global brain hypoperfusion in 10 ICU patients with
hypoactive delirium. After recovery from delirium cerebral
blood flow returned to normal, implying that cerebral hypo-
perfusion may contribute to the development of delirium.

Studies of ARDS survivors suggest that a combination of
acute hypoxia, hypoperfusion, and hyperglycemia plays an
important role in the long-term cognitive sequelae of critical
illness [3,58,59]. However, it has been difficult to demon-
strate a clear relationship, given the lengthy interval
between stimulus and effect and the great number of
additional contributing variables that can obscure down-
stream effects. Among ARDS survivors, Hopkins and
colleagues showed that the degree of CD at 1 year is
significantly correlated with the durations of hypoxia [58]
and mean arterial blood pressure less than 50 mmHg during
the ICU stay [3]. In animals, hyperglycemia markedly
enhances hypoxic-ischemic brain damage due to increased
brain edema and disrupted cerebral metabolism [60]. In
ARDS survivors, the duration of blood glucose greater than
180 mg/dl has been shown to correlate with worse visual
spatial abilities, visual memory, processing speed, and
executive function at 1 year [59]. Given the recent interest
in maintaining tight glucose control during critical illness as
a means of reducing mortality, it will be interesting to see
whether patients managed using this technique have better
cognitive outcomes. Clearly, such an approach will need to
balance the benefits of tight glucose control with the known
risks that hypoglycemia poses to the CNS.

One of the perceived difficulties with looking for evidence of
occult brain injury in humans is the apparent need for CNS
tissue specimens to prove that brain injury actually occurred.
However, studies of stroke, trauma, and cardiopulmonary
bypass-associated brain injury show that serum markers of
brain injury correlate well with the extent of CNS damage. S-
100β, neuron-specific enolase (NSE), and myelin basic
protein (MBP) are three such markers that could be used to
look for evidence of occult brain injury in critical illness-
associated CD.

S-100 is a dimeric calcium-binding protein consisting of two
subunits (α and β) [61]. The β unit (S-100β) is highly brain
specific, located mainly in astrocytes. Circulating levels of S-
100β are elevated in patients with cerebral ischemia [62],
cardiopulmonary bypass-associated decline in explicit
memory function [63,64], and traumatic brain injury (TBI)
[65-67]. Even in mild head injury, serum levels of S-100β are
correlated with clinical measures of injury severity, neuro-
radiologic findings, and outcomes, including postconcussion
symptoms [68]. Elevated serum S-100β levels were recently
demonstrated in critically ill patients with respiratory failure
[69] and in porcine models of endotoxic shock [70] and
acute lung injury [71]. In this latter group, elevated S-100β
levels were associated with hippocampal histopathologic
changes, including basophilic shrunken neurons in the
pyramidal cell layer [71]. Interestingly, S-100β may have both
beneficial and detrimental effects, in that lower levels may
have protective neurotrophic effects, yet higher levels can
lead to exacerbation of neuroinflammation and neuronal
dysfunction [72].

Whereas S-100β is a marker of astrocyte damage, NSE and
MPB are markers of neuron and white matter (myelin)
damage, respectively. NSE is protein-based enzyme that is
found primarily in neurons. Serum levels of NSE are elevated
after TBI, exhibiting a close relationship with outcome in
severe head injury [73,74] and with volume of contusion in
minor head injuries [75]. Interestingly, elevated NSE levels
were recently shown to predict death in one small study
(n = 29) of patients with severe sepsis [76], even though
these patients had no acute CNS disorders, such as stroke or
neurotrauma. MBP is the major protein component of myelin.
Serum levels of MBP are elevated in diseases in which there is
myelin breakdown. Studies of patients with TBI have shown
that MBP levels correlate with clinical measures of severity
and may allow early prediction of outcomes [74,77,78].

New developments in neuroimaging, such as functional
magnetic resonance imaging (MRI) and positron emission
tomography, have revolutionized our understanding of
abnormal brain function in many disease states, including
schizophrenia, Parkinson’s disease, and post-traumatic stress
disorder. To study further whether critical illness-associated
CD is associated with occult brain injury in humans, it would
be useful to have an imaging test that can detect subtle
evidence of brain injury. Unfortunately, traditional CT scans
and MRI do not appear to be sensitive enough to pick up the
microscopic cellular changes that may underlie CD [42]. Two
small studies assessed brain CT findings in critically ill
patients with sepsis [79,80]. Neither study demonstrated any
CT abnormalities, although brain pathology in nonsurvivors
was consistent with the previously cited findings of Sharshar
and colleagues [49-52]. A recent study of ARDS survivors
(n = 15) [81] found that many of these individuals exhibited
signs of significant brain atrophy and ventricular enlargement
on head CTs obtained during their acute illness, but there
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were no significant correlations between these abnormalities
and subsequent neurocognitive scores.

A new MRI technique may prove useful for identifying occult
brain injury in critically ill patients. Specifically, high-
resolution, three-dimensional MRI can be used to assess
noninvasively differences in brain tissue sodium concen-
tration, which is a highly sensitive marker of tissue viability
that highlights areas that traditional MRI can miss [82-86].
The method is based on sodium ion homeostasis, which is
tightly regulated in the body and is a major energy
consuming process. Any event that perturbs the energy level
of the cell enough to disrupt the sodium ion gradient, such
as ischemia, has an important impact on cell viability.
Although tissue sodium concentration MRI has been
successfully used to evaluate the CNS, including nonhuman
primate studies and clinical studies of stroke and reversible
focal brain ischemia [87-89], it has not been used to assess
patients with either acute or chronic critical illness-
associated CD.

Emerging therapeutics
There are several recent developments that, although
preliminary, are of interest because of their potential to
prevent or mitigate critical illness-associated CD.

Haloperidol
Haloperidol has been used for many years to manage agitation
in mechanically ventilated ICU patients, and it is the
recommended drug for treatment of ICU delirium [90].
Kalisvaart and colleagues [91] compared the effect of halo-
peridol prophylaxis (1.5 mg/day preoperatively and up to
3 days postoperatively) with that of placebo in 430 elderly hip
surgery patients at risk for delirium. Although there was no
difference in the incidence of postoperative delirium between
treatment and control groups, those in the haloperidol group
had significantly reduced severity and duration of delirium
(5.4 days versus 11.8 days; P < 0.001). Haloperiodol also
appeared to reduce the length of hospital stay among those
who developed delirium (17.1 days versus 22.6 days;
P < 0.001). A recent retrospective cohort study examined
haloperidol use in 989 patients who were mechanically
ventilated for longer than 48 hours [92]. Despite similar
baseline characteristics, patients treated with haloperidol had
significantly lower hospital mortality than did those who never
received the drug (20.5% versus 36.1%; P = 0.004), an
association that persisted after adjusting for potential
confounders. Because of the observational nature of the study
and the potential risks associated with haloperidol use, these
findings require confirmation in a randomized, controlled trial
before they may be applied to routine patient care.

Gabapentin
Leung and colleagues [93] tested the hypothesis that using
gabapentin as an add-on agent for treating postoperative
pain reduces the occurrence of postoperative delirium.

Patients aged 45 years or older undergoing spine surgery
were randomly assigned to gabapentin 900 mg or placebo by
mouth 1 to 2 hours before surgery and continued for the first
3 days postoperatively. Postoperative delirium occurred in
0% (0/9) of gabapentin-treated patients and 42% (5/12) of
placebo patients (P = 0.045). Reduction in delirium appeared
to be due to the opioid-sparing effect of gabapentin. Given
the small size of the study, these results require confirmation.

Donepezil
Donepezil, a cholinesterase inhibitor that increases synaptic
availability of acetylcholine, improves cognitive function in
Alzheimer’s disease. Sampson and colleagues [94]
randomly assigned 33 elderly patients undergoing elective
total hip replacement to donepezil 5 mg or placebo
immediately following surgery and every 24 hours for 3 days.
Donepezil was well tolerated with no serious adverse events.
Although the drug did not significantly reduce the incidence
of delirium (9.5% versus 35.7%; P = 0.08) or length of
hospital stay (mean ± standard error: 9.9 ± 0.73 days versus
12.1 ± 1.09 days; P = 0.09), both outcomes showed a
consistent trend suggesting possible benefit. The authors
project that a sample size of 95 patients would be required
for a definitive trial.

Dexmedetomidine
Dexmedetomidine’s sedative effects are due to selective
stimulation of α2-adrenoreceptors in the locus ceruleus of
the CNS. Because it does not have anticholinergic or
GABA-stimulating effects, it has the potential to be a
delirium-sparing sedative. In preliminary results presented in
abstract form [95], cardiac surgery patients (n = 55)
randomly assigned to dexmedetomidine for postoperative
sedation had a nonsignificantly lower incidence of post-
operative delirium as compared with those sedated with
propofol or a combination of fentanyl and midazolam (5%
versus 54% versus 46%). The authors of that report plan to
enroll a total of 90 patient in the study; perhaps these
impressive differences will be statistically significant with a
greater number of patients.

Recombinant human erythropoietin
Recombinant human erythropoietin (rHuEPO) has received
considerable attention as a potential transfusion sparing
strategy in the ICU. Interestingly, EPO and its receptor are
both expressed by the nervous system, and systemically
administered rHuEPO can reach sites within the brain. In
preclinical studies, rHuEPO reduced neuronal injury
produced by focal ischemia, TBI, spinal cord injury, and
subarachnoid hemorrhage [96-98]. Enthusiasm regarding its
use as a general neuroprotectant in the ICU has been
tempered by potential risks such as thromboembolism and
the considerable cost of the drug. Concerns over safety may
be at least partially addressed by the recent finding of
erythropoietin derivatives with tissue protective but not
hematopoietic properties [99].
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Xenon
Xenon is a chemically inert gas that has been used as an
anesthetic agent and for contrast enhancement in CT scans.
In rats xenon appears to protect the brain from the neurologic
damage associated with the use of cardiopulmonary bypass,
an effect that is potentially related to N-methyl-D-aspartate
receptor antagonism [100]. However, its tendency to expand
gaseous bubbles, such as bypass-associated cerebral air
emboli, could abolish any beneficial effect or even worsen
cerebral outcome [101].

Other potentially therapeutic agents
In the setting of ischemic stroke or TBI, there are a variety of
compounds with the potential to improve neurologic
outcomes. For example, NXY-059, a free radical trapping
agent, reduced disability at 90 days when given within 6 hours
of stroke onset [102]. In a pilot randomized trial in 56 patients,
simvastatin given up to 12 hours after stroke onset signifi-
cantly improved neurologic functioning (National Institutes of
Health Stroke Scale score) at 90 days [103]. Ethyl pyruvate, a
pyruvate derivative that prevents mortality in murine sepsis
models, reduced motor impairments, neurologic deficits, and
infarct volume in a rat stroke model when given as late as
12 hours after middle cerebral artery occlusion [104]. In
rodent models of TBI, cyclosporin A reduced acute motor
deficits and improved cognitive performance, even when given
after the traumatic insult [105]. A phase II dose escalation trial
is currently underway in humans.

Hypothermia
Mounting evidence suggests that mild-to-moderate hypo-
thermia can mitigate neurologic injury. Shankaran and
colleagues [106] found that whole-body hypothermia (33.5°C
for 72 hours) reduced the risk for death or disability in infants
with moderate or severe hypoxic-ischemic encephalopathy. In
adults successfully resuscitated after cardiac arrest, moderate
hypothermia (32-34°C for 12 to 24 hours) increased rates of
favorable neurologic outcomes and reduced mortality
[107,108]. A practical limitation of therapeutic hypothermia is
that reaching target temperatures takes at least 2 hours using
the fastest currently available cooling techniques. However,
Polderman and colleagues [109] demonstrated that hypo-
thermia could be induced safely and quickly (about 60 min)
by means of ice-cold intravenous fluid combined with ice-
water cooling blankets.

Cognitive rehabilitation
Cognitive rehabilitation involves the teaching of skills and
strategies to target specific problems in perception, memory,
thinking and problem solving, with the goal of improving
function and compensating for deficits. The benefits of
cognitive rehabilitation are well known to those that care for
patients with stroke, anoxia, or TBI. Predicting who will
benefit and how much has proven challenging, but even
severely disabled patients sometimes make dramatic neuro-
cognitive recoveries [110]. Although there are no studies

evaluating the effectiveness of cognitive rehabilitation in
patients recovering from non-neurologic critical illness, it
stands to reason that such patients could benefit when they
are found to be cognitively impaired. Because cognitive
impairments in critically ill patients appear to be under-
recognized by ICU and physical rehabilitation providers
[111], few patients are referred for cognitive rehabilitation
therapy [3]. Education regarding the cognitive sequelae of
critical illness is needed to enhance referrals for rehabilitation,
not only for weakness and physical debilitation but also for
cognitive impairments.

Conclusion
Cognitive function is an important and relatively understudied
outcome of critical illness. Evidence suggests that neuro-
transmitter abnormalities and occult diffuse brain injury are
important pathophysiologic mechanisms that underlie critical
illness-associated CD. Markers that could be used to
evaluate the influence of these mechanisms in individual
patients include the following: SAA, certain brain proteins (S-
100β, NSE, and MPB), and MRI tissue sodium concentration.
Although recent advances in this area are exciting, they are
still too immature to influence patient care. Additional
research is needed if we are to understand better the relative
contributions of specific mechanisms to the development of
critical illness-associated cognitive dysfunction and to
determine whether these mechanisms might be amenable to
treatment or prevention.
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