Your privacy, your choice

We use essential cookies to make sure the site can function. We also use optional cookies for advertising, personalisation of content, usage analysis, and social media.

By accepting optional cookies, you consent to the processing of your personal data - including transfers to third parties. Some third parties are outside of the European Economic Area, with varying standards of data protection.

See our privacy policy for more information on the use of your personal data.

for further information and to change your choices.

Skip to main content

Table 3 Performance of internal validation models (using data balanced by ADASYN method)

From: Development and external validation of a machine learning model for brain injury in pediatric patients on extracorporeal membrane oxygenation

Model

AUC

AUPRC

Accuracy

TPR

TNR

FPR

FNR

PPV

NPV

F1

AIC

Brier Score

PLR

NLR

RF

0.912

0.670

0.879

0.900

0.700

0.037

0.557

0.963

0.443

0.931

190.753

0.108

14.551

0.555

XGB

0.867

0.423

0.791

0.800

0.720

0.038

0.710

0.962

0.290

0.873

244.613

0.137

5.622

0.756

LGB

0.840

0.433

0.804

0.825

0.620

0.050

0.713

0.950

0.287

0.883

257.834

0.135

7.675

0.722

DT

0.655

0.184

0.712

0.736

0.500

0.072

0.823

0.928

0.177

0.821

312.022

0.202

2.350

0.901

SVM

0.810

0.372

0.777

0.795

0.620

0.052

0.744

0.948

0.256

0.865

266.943

0.160

5.177

0.783

NaiveBayes

0.704

0.257

0.816

0.861

0.420

0.071

0.744

0.929

0.256

0.894

297.572

0.147

4.408

0.747

NN

0.835

0.334

0.779

0.790

0.680

0.044

0.730

0.956

0.270

0.865

258.970

0.165

6.444

0.763

GLM

0.718

0.288

0.697

0.708

0.600

0.060

0.810

0.940

0.190

0.808

294.173

0.200

3.113

0.863

GBM

0.686

0.203

0.808

0.856

0.380

0.076

0.768

0.924

0.232

0.889

308.991

0.243

2.547

0.910

AdaBoost

0.789

0.360

0.785

0.806

0.600

0.053

0.739

0.947

0.261

0.871

279.334

0.151

4.342

0.799

  1. AUC Area under the curve; AUPRC: the area under the precision-recall curve; TPR: True positive rate; TNR: True negative rate; FPR: False positive rate; FNR: False negative rate; PPV: Positive predictive value; NPV: Negative predictive value; AIC: Akaike Information Criterion; PLR: Positive likelihood ratio; NLR: Negative likelihood ratio